Menu Close

If-C-r-stands-for-n-C-r-n-r-n-r-and-r-1-n-r-C-r-2-for-n-2-then-is-divisible-by-1-3-n-1-2-n-1-3-n-2n-1-4-n-2-1-




Question Number 23884 by Tinkutara last updated on 09/Nov/17
If C_r  stands for^n C_r  = ((n!)/(r! n − r!)) and  Σ_(r=1) ^n r.C_r ^2  = λ for n ≥ 2, then λ is divisible  by  (1) 3 (n − 1)  (2) n + 1  (3) n (2n − 1)  (4) n^2  + 1
IfCrstandsfornCr=n!r!nr!andnr=1r.Cr2=λforn2,thenλisdivisibleby(1)3(n1)(2)n+1(3)n(2n1)(4)n2+1
Answered by ajfour last updated on 09/Nov/17
n(1+x)^(n−1) (x+1)^n =(C_1 +2C_2 x+..  ...+nC_n x^(n−1) )(C_0 x^n +C_1 x^(n−1) +C_2 x^(n−2) +..)  so coefficient of x^(n−1)  in the  expansion of n(1+x)^(2n−1)   is    =n^(2n−1) C_(n−1)  =((n(2n−1)!)/(n!(n−1)!)) =Σ_(r=1) ^n rC_r ^( 2)      =((n(2n−1)(2n−2)!)/(n(n−1)!(n−1)!))    =^(2n−2) C_(n−1) (2n−1)  ⇒  λ is divisible by n and  λ is divisible by    (2n−1) .  I cannot prove if it will be  divisible by n(2n−1) or not !
n(1+x)n1(x+1)n=(C1+2C2x+..Missing or unrecognized delimiter for \leftsocoefficientofxn1intheexpansionofn(1+x)2n1is=n2n1Cn1=n(2n1)!n!(n1)!=nr=1rCr2=n(2n1)(2n2)!n(n1)!(n1)!=2n2Cn1(2n1)λisdivisiblebynandλisdivisibleby(2n1).Icannotproveifitwillbedivisiblebyn(2n1)ornot!

Leave a Reply

Your email address will not be published. Required fields are marked *