Menu Close

If-Cis-2pi-7-and-f-x-A-0-n-1-14-A-n-x-n-Then-prove-that-0-6-f-n-x-7-A-0-A-7-x-7-A-14-x-14-where-Cis-Cos-iSin-




Question Number 61835 by alphaprime last updated on 09/Jun/19
If α = Cis(2π/7) and f(x) = A_0  + Σ_(n=1) ^(14) A_n x^n    Then prove that Σ_(α=0) ^6 f(α^n x)= 7(A_0 +A_7 x^7 +A_(14) x^(14) )  where Cisθ = Cosθ + iSinθ
Ifα=Cis(2π/7)andf(x)=A0+n=114AnxnThenprovethatα=06f(αnx)=7(A0+A7x7+A14x14)whereCisθ=Cosθ+iSinθ
Commented by arcana last updated on 10/Jun/19
Σ_(n=0) ^6 f(α^n x)=f(x)+(αx)+...+f(α^6 x)  =(A_0  + Σ_(n=1) ^(14) A_n x^n )+(A_0  + Σ_(n=1) ^(14) A_n (αx)^n )+...+(A_0  + Σ_(n=1) ^(14) A_n (α^6 x)^n )  =7A_0 +A_1 Σ_(n=0) ^6 α^n x +A_2 Σ_(n=0) ^6 α^(2n) x^2 +...+A_(14) Σ_(n=0) ^6 α^(14n) x^(14)   =7A_0 +A_1 xΣ_(n=0) ^6 α^n  +A_2 x^2 Σ_(n=0) ^6 α^(2n) +...+A_(14) x^(14) Σ_(n=0) ^6 α^(14n)     but prop. raices complex  1+α+α^2 +α^3 +α^4 +α^5 +α^6 =0  ⇒  =7A_0 +A_7 x^7 Σ_0 ^6 α^(7n) +A_(14) x^(14) Σ_0 ^6 α^(14n)  (uses powers mod 7)  α^7 =Cis^7 (2π/7)=Cis(2π)=1  ⇒α^(7n) =1⇒α^(14n) =1  ⇒  =7A_0 +7A_7 x^6 +7A_(14) x^(14)
6n=0f(αnx)=f(x)+(αx)++f(α6x)=(A0+n=114Anxn)+(A0+n=114An(αx)n)++(A0+n=114An(α6x)n)=7A0+A16n=0αnx+A26n=0α2nx2++A146n=0α14nx14=7A0+A1x6n=0αn+A2x26n=0α2n++A14x146n=0α14nbutprop.raicescomplex1+α+α2+α3+α4+α5+α6=0=7A0+A7x760α7n+A14x1460α14n(usespowersmod7)α7=Cis7(2π/7)=Cis(2π)=1α7n=1α14n=1=7A0+7A7x6+7A14x14

Leave a Reply

Your email address will not be published. Required fields are marked *