Menu Close

if-cos-2-3cosec-2-7-find-the-expression-of-tan-2-Hence-show-that-tan-1-Mastermind-




Question Number 170336 by Mastermind last updated on 21/May/22
if cos^2 ∝ + 3cosec^2 θ = 7, find the   expression of tan^2 θ, Hence show that  tanθ=1.    Mastermind
ifcos2+3cosec2θ=7,findtheexpressionoftan2θ,Henceshowthattanθ=1.Mastermind
Commented by MATHSLORD22 last updated on 21/May/22
cos^2 θ or cos^2 α ??
cos2θorcos2α??
Answered by thfchristopher last updated on 21/May/22
cos^2 θ+3csc^2 θ=7  ⇒sin^2 θcos^2 θ+3=7sin^2 θ  ⇒sin^2 θ(1−sin^2 θ)+3=7sin^2 θ  ⇒sin^2 θ−sin^4 θ+3=7sin^2 θ  ⇒sin^4 θ+6sin^2 θ−3=0  sin^2 θ=((−6±(√(36+12)))/2)=((−6±4(√3))/2)  ∴ sin^2 θ=2(√3)−3  ⇒cos^2 θ=4−2(√3)  ⇒tan^2 θ=((2(√3)−3)/(4−2(√3)))  =((√3)/2)
cos2θ+3csc2θ=7sin2θcos2θ+3=7sin2θsin2θ(1sin2θ)+3=7sin2θsin2θsin4θ+3=7sin2θsin4θ+6sin2θ3=0sin2θ=6±36+122=6±432sin2θ=233cos2θ=423tan2θ=233423=32
Commented by MATHSLORD22 last updated on 21/May/22
He wrote α not θ
Hewroteαnotθ
Commented by mr W last updated on 21/May/22
He wrote ∝ not α :)
Hewrotenotα:)
Commented by Mastermind last updated on 21/May/22
Thank you man
Thankyouman
Answered by 2kdw last updated on 28/Apr/23
i) cos^2 α +(3/(sin^2 α))=7    if cos^2 x=1−sin^2 x  ...(1)  and sin^2 x=t ... (2)    ∴ t(1−t)+3=7t  −t^2 +t+3=7t  −t^2 −6t+3=0  ∴ (t+3)^2 =12  ⇒t=2(√3)−3 or t=−3−2(√3)    but   (1)   1−t≥0    then  t≤1  ∴  determinant (((t=2(√3)−3)))    ii) If (2)  t=sin^2 α  [sin^2 α=2(√3)−3]    ...(1)  cos^2 α=1−2(√3)+3      ∴  tan^2 α=((2(√3)−3)/(1−2(√3)+3))     determinant (((tan^2 α=((2(√3)−3)/(4−2(√3))))))
i)cos2α+3sin2α=7ifcos2x=1sin2x(1)andsin2x=t(2)t(1t)+3=7tt2+t+3=7tt26t+3=0(t+3)2=12t=233ort=323but(1)1t0thent1t=233ii)If(2)t=sin2α[sin2α=233](1)cos2α=123+3tan2α=233123+3tan2α=233423
Commented by Mastermind last updated on 21/May/22
Thanks man
Thanksman

Leave a Reply

Your email address will not be published. Required fields are marked *