Menu Close

if-cos-2-3cosec-2-7-find-the-expression-of-tan-2-Hence-show-that-tan-1-Mastermind-




Question Number 170336 by Mastermind last updated on 21/May/22
if cos^2 ∝ + 3cosec^2 θ = 7, find the   expression of tan^2 θ, Hence show that  tanθ=1.    Mastermind
$${if}\:{cos}^{\mathrm{2}} \propto\:+\:\mathrm{3}{cosec}^{\mathrm{2}} \theta\:=\:\mathrm{7},\:{find}\:{the}\: \\ $$$${expression}\:{of}\:{tan}^{\mathrm{2}} \theta,\:{Hence}\:{show}\:{that} \\ $$$${tan}\theta=\mathrm{1}. \\ $$$$ \\ $$$${Mastermind} \\ $$
Commented by MATHSLORD22 last updated on 21/May/22
cos^2 θ or cos^2 α ??
$$\mathrm{cos}^{\mathrm{2}} \theta\:\mathrm{or}\:\mathrm{cos}^{\mathrm{2}} \alpha\:?? \\ $$
Answered by thfchristopher last updated on 21/May/22
cos^2 θ+3csc^2 θ=7  ⇒sin^2 θcos^2 θ+3=7sin^2 θ  ⇒sin^2 θ(1−sin^2 θ)+3=7sin^2 θ  ⇒sin^2 θ−sin^4 θ+3=7sin^2 θ  ⇒sin^4 θ+6sin^2 θ−3=0  sin^2 θ=((−6±(√(36+12)))/2)=((−6±4(√3))/2)  ∴ sin^2 θ=2(√3)−3  ⇒cos^2 θ=4−2(√3)  ⇒tan^2 θ=((2(√3)−3)/(4−2(√3)))  =((√3)/2)
$$\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{3csc}^{\mathrm{2}} \theta=\mathrm{7} \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \theta\mathrm{cos}^{\mathrm{2}} \theta+\mathrm{3}=\mathrm{7sin}^{\mathrm{2}} \theta \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \theta\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \theta\right)+\mathrm{3}=\mathrm{7sin}^{\mathrm{2}} \theta \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{2}} \theta−\mathrm{sin}^{\mathrm{4}} \theta+\mathrm{3}=\mathrm{7sin}^{\mathrm{2}} \theta \\ $$$$\Rightarrow\mathrm{sin}^{\mathrm{4}} \theta+\mathrm{6sin}^{\mathrm{2}} \theta−\mathrm{3}=\mathrm{0} \\ $$$$\mathrm{sin}^{\mathrm{2}} \theta=\frac{−\mathrm{6}\pm\sqrt{\mathrm{36}+\mathrm{12}}}{\mathrm{2}}=\frac{−\mathrm{6}\pm\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\therefore\:\mathrm{sin}^{\mathrm{2}} \theta=\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3} \\ $$$$\Rightarrow\mathrm{cos}^{\mathrm{2}} \theta=\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{tan}^{\mathrm{2}} \theta=\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}}{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$$=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$
Commented by MATHSLORD22 last updated on 21/May/22
He wrote α not θ
$$\mathrm{He}\:\mathrm{wrote}\:\alpha\:\mathrm{not}\:\theta \\ $$
Commented by mr W last updated on 21/May/22
He wrote ∝ not α :)
$$\left.\mathrm{He}\:\mathrm{wrote}\:\propto\:\mathrm{not}\:\alpha\::\right) \\ $$
Commented by Mastermind last updated on 21/May/22
Thank you man
$${Thank}\:{you}\:{man} \\ $$
Answered by 2kdw last updated on 28/Apr/23
i) cos^2 α +(3/(sin^2 α))=7    if cos^2 x=1−sin^2 x  ...(1)  and sin^2 x=t ... (2)    ∴ t(1−t)+3=7t  −t^2 +t+3=7t  −t^2 −6t+3=0  ∴ (t+3)^2 =12  ⇒t=2(√3)−3 or t=−3−2(√3)    but   (1)   1−t≥0    then  t≤1  ∴  determinant (((t=2(√3)−3)))    ii) If (2)  t=sin^2 α  [sin^2 α=2(√3)−3]    ...(1)  cos^2 α=1−2(√3)+3      ∴  tan^2 α=((2(√3)−3)/(1−2(√3)+3))     determinant (((tan^2 α=((2(√3)−3)/(4−2(√3))))))
$$\left.{i}\right)\:{cos}^{\mathrm{2}} \alpha\:+\frac{\mathrm{3}}{{sin}^{\mathrm{2}} \alpha}=\mathrm{7} \\ $$$$ \\ $$$${if}\:{cos}^{\mathrm{2}} {x}=\mathrm{1}−{sin}^{\mathrm{2}} {x}\:\:…\left(\mathrm{1}\right) \\ $$$${and}\:{sin}^{\mathrm{2}} {x}={t}\:…\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$$\therefore\:{t}\left(\mathrm{1}−{t}\right)+\mathrm{3}=\mathrm{7}{t} \\ $$$$−{t}^{\mathrm{2}} +{t}+\mathrm{3}=\mathrm{7}{t} \\ $$$$−{t}^{\mathrm{2}} −\mathrm{6}{t}+\mathrm{3}=\mathrm{0} \\ $$$$\therefore\:\left({t}+\mathrm{3}\right)^{\mathrm{2}} =\mathrm{12} \\ $$$$\Rightarrow{t}=\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}\:{or}\:{t}=−\mathrm{3}−\mathrm{2}\sqrt{\mathrm{3}} \\ $$$$ \\ $$$${but}\:\:\:\left(\mathrm{1}\right)\:\:\:\mathrm{1}−{t}\geqslant\mathrm{0}\:\:\:\:{then}\:\:{t}\leqslant\mathrm{1} \\ $$$$\therefore\:\begin{array}{|c|}{{t}=\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}}\\\hline\end{array} \\ $$$$ \\ $$$$\left.{ii}\right)\:{If}\:\left(\mathrm{2}\right)\:\:{t}={sin}^{\mathrm{2}} \alpha \\ $$$$\left[{sin}^{\mathrm{2}} \alpha=\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}\right] \\ $$$$ \\ $$$$…\left(\mathrm{1}\right)\:\:{cos}^{\mathrm{2}} \alpha=\mathrm{1}−\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{3} \\ $$$$ \\ $$$$ \\ $$$$\therefore\:\:{tan}^{\mathrm{2}} \alpha=\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}}{\mathrm{1}−\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{3}} \\ $$$$ \\ $$$$\begin{array}{|c|}{{tan}^{\mathrm{2}} \alpha=\frac{\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{3}}{\mathrm{4}−\mathrm{2}\sqrt{\mathrm{3}}}}\\\hline\end{array} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$
Commented by Mastermind last updated on 21/May/22
Thanks man
$${Thanks}\:{man} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *