Menu Close

if-cos-2-sin-2-tan-2-Then-proof-that-2cos-2-1-cos-2-sin-2-2tan-2-




Question Number 35654 by chakraborty ankit last updated on 21/May/18
if  cos^2 θ−sin^2 θ=tan^2 ∅  Then proof that  2cos^2 ∅−1=cos^2 ∅−sin^2 ∅=2tan^2 θ
$${if}\:\:\mathrm{cos}\:^{\mathrm{2}} \theta−\mathrm{sin}\:^{\mathrm{2}} \theta=\mathrm{tan}\:^{\mathrm{2}} \emptyset\:\:{Then}\:{proof}\:{that} \\ $$$$\mathrm{2cos}\:^{\mathrm{2}} \emptyset−\mathrm{1}=\mathrm{cos}\:^{\mathrm{2}} \emptyset−\mathrm{sin}\:^{\mathrm{2}} \emptyset=\mathrm{2tan}\:^{\mathrm{2}} \theta \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 21/May/18
cos^2 θ−sin^2 θ=tan^2 ∅   that means  cos2θ=tan^2 ∅  2cos^2 ∅−1  =cos2φ  =((1−tan^2 ∅)/(1+tan^2 ∅))  =((1−cos2θ)/(1+cos2θ))  =((2sin^2 θ)/(2cos^2 θ))  =tan^2 θ  pls check^
$${cos}^{\mathrm{2}} \theta−{sin}^{\mathrm{2}} \theta={tan}^{\mathrm{2}} \emptyset\:\:\:{that}\:{means} \\ $$$${cos}\mathrm{2}\theta={tan}^{\mathrm{2}} \emptyset \\ $$$$\mathrm{2}{cos}^{\mathrm{2}} \emptyset−\mathrm{1} \\ $$$$={cos}\mathrm{2}\phi \\ $$$$=\frac{\mathrm{1}−{tan}^{\mathrm{2}} \emptyset}{\mathrm{1}+{tan}^{\mathrm{2}} \emptyset} \\ $$$$=\frac{\mathrm{1}−{cos}\mathrm{2}\theta}{\mathrm{1}+{cos}\mathrm{2}\theta} \\ $$$$=\frac{\mathrm{2}{sin}^{\mathrm{2}} \theta}{\mathrm{2}{cos}^{\mathrm{2}} \theta} \\ $$$$={tan}^{\mathrm{2}} \theta \\ $$$${pls}\:{chec}\overset{} {{k}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *