Menu Close

If-cos-2y-tan-2-x-prove-that-cos2x-tan-2-y-




Question Number 50705 by 786786AM last updated on 19/Dec/18
If cos 2y = tan^2 x, prove that cos2x=tan^2 y.
$$\mathrm{If}\:\mathrm{cos}\:\mathrm{2y}\:=\:\mathrm{tan}\:^{\mathrm{2}} \mathrm{x},\:\mathrm{prove}\:\mathrm{that}\:\mathrm{cos2x}=\mathrm{tan}\:^{\mathrm{2}} \mathrm{y}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Dec/18
cos2x  =((1−tan^2 x)/(1+tan^2 x))  =((1−cos2y)/(1+cos2y))  =((2sin^2 y)/(2cos^2 y))  =tan^2 y
$${cos}\mathrm{2}{x} \\ $$$$=\frac{\mathrm{1}−{tan}^{\mathrm{2}} {x}}{\mathrm{1}+{tan}^{\mathrm{2}} {x}} \\ $$$$=\frac{\mathrm{1}−{cos}\mathrm{2}{y}}{\mathrm{1}+{cos}\mathrm{2}{y}} \\ $$$$=\frac{\mathrm{2}{sin}^{\mathrm{2}} {y}}{\mathrm{2}{cos}^{\mathrm{2}} {y}} \\ $$$$={tan}^{\mathrm{2}} {y} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *