Menu Close

if-cos-f-x-dx-g-x-sin-f-x-dx-use-g-x-




Question Number 79086 by key of knowledge last updated on 22/Jan/20
if:∫cos(f(x))dx=g(x)  ∫sin(f(x))dx=? (use g(x))
$$\mathrm{if}:\int\mathrm{cos}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=\mathrm{g}\left(\mathrm{x}\right) \\ $$$$\int\mathrm{sin}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=?\:\left(\mathrm{use}\:\mathrm{g}\left(\mathrm{x}\right)\right) \\ $$
Commented by mr W last updated on 23/Jan/20
how did you get  ∫ (du/(−f′(x)))= −((cos (f(x)))/(−f′(x)))+c
$${how}\:{did}\:{you}\:{get} \\ $$$$\int\:\frac{\mathrm{du}}{−\mathrm{f}'\left(\mathrm{x}\right)}=\:−\frac{\mathrm{cos}\:\left(\mathrm{f}\left(\mathrm{x}\right)\right)}{−\mathrm{f}'\left(\mathrm{x}\right)}+\mathrm{c} \\ $$
Commented by jagoll last updated on 23/Jan/20
cos f(x)=g′(x)=u  −f′(x)sin (f(x))dx=du  sin f(x)=(√(1−cos^2 (f(x))))  sin f(x)=(√(1−u^2 ))  ∫(√(1−u^2 )) ×(du/(−f′(x).(√(1−u^2 )))) =  ∫ (du/(−f′(x)))= −((cos (f(x)))/(−f′(x)))+c
$$\mathrm{cos}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{g}'\left(\mathrm{x}\right)=\mathrm{u} \\ $$$$−\mathrm{f}'\left(\mathrm{x}\right)\mathrm{sin}\:\left(\mathrm{f}\left(\mathrm{x}\right)\right)\mathrm{dx}=\mathrm{du} \\ $$$$\mathrm{sin}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} \left(\mathrm{f}\left(\mathrm{x}\right)\right)} \\ $$$$\mathrm{sin}\:\mathrm{f}\left(\mathrm{x}\right)=\sqrt{\mathrm{1}−\mathrm{u}^{\mathrm{2}} } \\ $$$$\int\sqrt{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }\:×\frac{\mathrm{du}}{−\mathrm{f}'\left(\mathrm{x}\right).\sqrt{\mathrm{1}−\mathrm{u}^{\mathrm{2}} }}\:= \\ $$$$\int\:\frac{\mathrm{du}}{−\mathrm{f}'\left(\mathrm{x}\right)}=\:−\frac{\mathrm{cos}\:\left(\mathrm{f}\left(\mathrm{x}\right)\right)}{−\mathrm{f}'\left(\mathrm{x}\right)}+\mathrm{c} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *