Menu Close

If-cos-x-dy-dx-y-y-pi-3-




Question Number 175879 by cortano1 last updated on 08/Sep/22
  If cos x .(dy/dx) = y ⇒y((π/3))=?
$$\:\:\mathrm{If}\:\mathrm{cos}\:\mathrm{x}\:.\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:\mathrm{y}\:\Rightarrow\mathrm{y}\left(\frac{\pi}{\mathrm{3}}\right)=? \\ $$
Commented by mr W last updated on 08/Sep/22
(dy/y)=(dx/(cos x))  (dy/y)=((cos x dx)/(cos^2  x))  (dy/y)=((d(sin x))/(1−sin^2  x))  ∫(dy/y)=(1/2)∫((1/(1−sin x))+(1/(1+sin x)))d(sin x)  ln y=(1/2)(ln ((1+sin x)/(1−sin x)))+C_1   ⇒y=C(√((1+sin x)/(1−sin x)))  y((π/3))=C(√((2+(√3))/(2−(√3))))=(2+(√3))C
$$\frac{{dy}}{{y}}=\frac{{dx}}{\mathrm{cos}\:{x}} \\ $$$$\frac{{dy}}{{y}}=\frac{\mathrm{cos}\:{x}\:{dx}}{\mathrm{cos}^{\mathrm{2}} \:{x}} \\ $$$$\frac{{dy}}{{y}}=\frac{{d}\left(\mathrm{sin}\:{x}\right)}{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \:{x}} \\ $$$$\int\frac{{dy}}{{y}}=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{sin}\:{x}}+\frac{\mathrm{1}}{\mathrm{1}+\mathrm{sin}\:{x}}\right){d}\left(\mathrm{sin}\:{x}\right) \\ $$$$\mathrm{ln}\:{y}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{ln}\:\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}\right)+{C}_{\mathrm{1}} \\ $$$$\Rightarrow{y}={C}\sqrt{\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}} \\ $$$${y}\left(\frac{\pi}{\mathrm{3}}\right)={C}\sqrt{\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{2}−\sqrt{\mathrm{3}}}}=\left(\mathrm{2}+\sqrt{\mathrm{3}}\right){C} \\ $$
Commented by cortano1 last updated on 09/Sep/22
yes...I got    y = ((C cos x)/(1−sin x))
$$\mathrm{yes}…\mathrm{I}\:\mathrm{got}\: \\ $$$$\:\mathrm{y}\:=\:\frac{\mathrm{C}\:\mathrm{cos}\:\mathrm{x}}{\mathrm{1}−\mathrm{sin}\:\mathrm{x}}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *