Menu Close

If-cot-x-cos-x-n-and-m-2-n-2-4-mn-prove-that-m-cot-x-cos-x-




Question Number 85386 by john santu last updated on 21/Mar/20
If cot x−cos x = n and   m^2 −n^(2 ) = 4(√(mn))  prove that m = cot x + cos x
Ifcotxcosx=nandm2n2=4mnprovethatm=cotx+cosx
Answered by mind is power last updated on 23/Mar/20
n=a−b  m=(a+b)  ⇒m^2 −n^2 =4ab=4(√(a^2 −b^2 ))  ⇒a^2 b^2 =a^2 −b^2   ⇒a^2 =(b^2 /(1−b^2 ))  ⇒n=(b/( (√(1−b^2 ))))−b⇒=cot(x)−cos(x)  f(b)=(b/( (√(1−b^2 ))))−b  f′(b)=(((√(1−b^2 ))+(b^2 /( (√(1−b^2 )))))/((1−b^2 )))−1  =(1/((1−b^2 )(√(1−b^2 ))))−1>0  since b∈]−1,1[  f(b) is increase function   f(cos(x))=cot(x)−cos(x)⇒b=cos(x)⇒  a=cot(x)⇒m=a+b=cot(x)+cos(x)
n=abm=(a+b)m2n2=4ab=4a2b2a2b2=a2b2a2=b21b2n=b1b2b⇒=cot(x)cos(x)f(b)=b1b2bf(b)=1b2+b21b2(1b2)1=1(1b2)1b21>0sinceb]1,1[f(b)isincreasefunctionf(cos(x))=cot(x)cos(x)b=cos(x)a=cot(x)m=a+b=cot(x)+cos(x)

Leave a Reply

Your email address will not be published. Required fields are marked *