Menu Close

If-d-2-y-dx-2-4y-0-y-0-1-and-y-pi-6-3-2-1-2-How-to-find-y-x-




Question Number 15179 by Joel577 last updated on 08/Jun/17
If  (d^2 y/dx^2 ) + 4y = 0   y(0) = 1 and y((π/6)) = ((√3)/2) + (1/2)  How to find y(x) ?
Ifd2ydx2+4y=0y(0)=1andy(π6)=32+12Howtofindy(x)?
Answered by sma3l2996 last updated on 08/Jun/17
y′′(x)+4y=0  r^2 +4=0⇔r_1 =2i ,  r=−2i  y(x)=Ae^(2ix) +Be^(−2ix)   y(0)=A+B=1⇔B=1−A  y((π/6))=Ae^((π/3)i) +(1−A)e^(−(π/3)i) =A(e^((π/3)i) −e^(−(π/3)i) )+(1/2)−i((√3)/2)  =2iAsin((π/3))+(1/2)−i((√3)/2)=((√3)/2)+(1/2)  2iA((√3)/2)+(1/2)−i((√3)/2)−((√3)/2)−(1/2)=0  2iA=i+1⇔A=(1/2)−i(1/2)=((√2)/2)e^(−i(π/4))   B=(1/2)+i(1/2)=((√2)/2)e^(i(π/4))   y(x)=((√2)/2)(e^(i(2x−(π/4))) +e^(−i(2x−(π/4))) )=((√2)/2)×2cos(2x−(π/4))  y(x)=(√2)cos(2x−(π/4))
y(x)+4y=0r2+4=0r1=2i,r=2iy(x)=Ae2ix+Be2ixy(0)=A+B=1B=1Ay(π6)=Aeπ3i+(1A)eπ3i=A(eπ3ieπ3i)+12i32=2iAsin(π3)+12i32=32+122iA32+12i323212=02iA=i+1A=12i12=22eiπ4B=12+i12=22eiπ4y(x)=22(ei(2xπ4)+ei(2xπ4))=22×2cos(2xπ4)y(x)=2cos(2xπ4)
Commented by Joel577 last updated on 08/Jun/17
thank you very much
thankyouverymuch

Leave a Reply

Your email address will not be published. Required fields are marked *