Question Number 115508 by bemath last updated on 26/Sep/20

Answered by bobhans last updated on 26/Sep/20
![⇒ determinant (((a a^2 1)),((b b^2 1)),((c c^2 1)))+ determinant (((a a^2 a^3 )),((b b^2 b^3 )),((c c^2 c^3 )))= 0 ⇒(−1) determinant (((1 a^2 a)),((1 b^2 b)),((1 c^2 c)))+ abc determinant (((1 a a^2 )),((1 b b^2 )),((1 c c^2 )))= 0 ⇒(−1)^2 determinant (((1 a a^2 )),((1 b b^2 )),((1 c c^2 )))+ abc determinant (((1 a a^2 )),((1 b b^2 )),((1 c c^2 )))= 0 ⇒(1+abc) determinant (((1 a a^2 )),((1 b b^2 )),((1 c c^2 )))= 0 ⇒(1+abc) determinant (((1 a a^2 )),((0 b−a b^2 −a^2 )),((0 c−a c^2 −a^2 )))= 0 ⇒(1+abc) determinant (((b−a b^2 −a^2 )),((c−a c^2 −a^2 )))= 0 ⇒(1+abc)[(b−a)(c−a)(c+a)−(c−a)(b−a)(b+a)]=0 ⇒(1+abc)(b−a)(c−a) [ c+a−b−a] = 0 (1+abc)(b−a)(c−a)(c−b) = 0 since a≠b≠c ; so we get abc = −1 let a = k , b = l → c = −(1/(k.l))](https://www.tinkutara.com/question/Q115513.png)
Commented by bemath last updated on 26/Sep/20

Answered by TANMAY PANACEA last updated on 26/Sep/20

Commented by bemath last updated on 26/Sep/20
