Menu Close

if-dy-dx-y-1-y-x-then-the-integrating-factor-I-F-is-




Question Number 78999 by gopikrishnan last updated on 22/Jan/20
if dy/dx+y=1+y/x,then the integrating factor (I,F) is
ifdy/dx+y=1+y/x,thentheintegratingfactor(I,F)is
Commented by mr W last updated on 22/Jan/20
please don′t type the whole post in a  single line sir!    with 1+y/x do you mean 1+(y/x) or  ((1+y)/x)?
pleasedonttypethewholepostinasinglelinesir!with1+y/xdoyoumean1+yxor1+yx?
Commented by jagoll last updated on 22/Jan/20
not clear sir your question
notclearsiryourquestion
Answered by mind is power last updated on 22/Jan/20
if (dy/dx)+y=1+(y/x),x∈R^∗   ⇔(dy/dx)+y(1−(1/x))=1...W  Homgenius  ⇒(dy/dx)+y(1−(1/x))=0  ⇔(dy/y)=((1/x)−1)dx,x  ⇒ln(y)=(ln(x)−x)  ⇒y=kxe^(−x) ,k Constante  General y_p (x)=k(x)xe^(−x) ,Solution of ..W  k′xe^(−x) +(e^(−x) −xe^(−x) )k(x)+kxe^(−x) (1−(1/x))=1  ⇒k′(x)=(e^(−x) /x)⇒k(x)=∫(e^(−x) /x)=−E_i (x), Exponentiel Integral  Y_p =(−E_i (x))xe^(−x)   Y=Y_h +Y_p =kxe^(−x) −E_i (x)xe^(−x) ,k∈R,x∈R_+ ^∗   (dy/dx)+y=((1+y)/x)  ⇔x(dy/dx)=y(1−x)+1  Homgenius  (dy/dx).(1/y)=((1−x)/x)⇒ln(y)=(ln(x)−x)+c⇒y=kxe^(−x)   let Y_p =k(x)xe^(−x)  particular Solution⇒  x(k′xe^(−x) +k(e^(−x) −x))+(x−1)kxe^(−x) =1  ⇒k′=(e^(−x) /x^2 )⇒k=∫(e^(−x) /x^2 ),by Part=(−(e^(−x) /x)−∫(e^(−x) /x)dx  =−(e^(−x) /x)−E_i (x)  Y_p =(−(e^(−x) /x)−E_i (x))xe^(−x) +kxe^(−x) ,k∈R
ifdydx+y=1+yx,xRdydx+y(11x)=1WHomgeniusdydx+y(11x)=0dyy=(1x1)dx,xln(y)=(ln(x)x)y=kxex,kConstanteGeneralyp(x)=k(x)xex,Solutionof..Wkxex+(exxex)k(x)+kxex(11x)=1k(x)=exxk(x)=exx=Ei(x),ExponentielIntegralYp=(Ei(x))xexY=Yh+Yp=kxexEi(x)xex,kR,xR+dydx+y=1+yxxdydx=y(1x)+1Homgeniusdydx.1y=1xxln(y)=(ln(x)x)+cy=kxexletYp=k(x)xexparticularSolutionx(kxex+k(exx))+(x1)kxex=1k=exx2k=exx2,byPart=(exxexxdx=exxEi(x)Yp=(exxEi(x))xex+kxex,kR

Leave a Reply

Your email address will not be published. Required fields are marked *