Menu Close

if-dy-dx-y-1-y-x-then-the-integrating-factor-I-F-is-




Question Number 78999 by gopikrishnan last updated on 22/Jan/20
if dy/dx+y=1+y/x,then the integrating factor (I,F) is
$${if}\:{dy}/{dx}+{y}=\mathrm{1}+{y}/{x},{then}\:{the}\:{integrating}\:{factor}\:\left({I},{F}\right)\:{is} \\ $$
Commented by mr W last updated on 22/Jan/20
please don′t type the whole post in a  single line sir!    with 1+y/x do you mean 1+(y/x) or  ((1+y)/x)?
$${please}\:{don}'{t}\:{type}\:{the}\:{whole}\:{post}\:{in}\:{a} \\ $$$${single}\:{line}\:{sir}! \\ $$$$ \\ $$$${with}\:\mathrm{1}+{y}/{x}\:{do}\:{you}\:{mean}\:\mathrm{1}+\frac{{y}}{{x}}\:{or} \\ $$$$\frac{\mathrm{1}+{y}}{{x}}? \\ $$
Commented by jagoll last updated on 22/Jan/20
not clear sir your question
$$\mathrm{not}\:\mathrm{clear}\:\mathrm{sir}\:\mathrm{your}\:\mathrm{question} \\ $$
Answered by mind is power last updated on 22/Jan/20
if (dy/dx)+y=1+(y/x),x∈R^∗   ⇔(dy/dx)+y(1−(1/x))=1...W  Homgenius  ⇒(dy/dx)+y(1−(1/x))=0  ⇔(dy/y)=((1/x)−1)dx,x  ⇒ln(y)=(ln(x)−x)  ⇒y=kxe^(−x) ,k Constante  General y_p (x)=k(x)xe^(−x) ,Solution of ..W  k′xe^(−x) +(e^(−x) −xe^(−x) )k(x)+kxe^(−x) (1−(1/x))=1  ⇒k′(x)=(e^(−x) /x)⇒k(x)=∫(e^(−x) /x)=−E_i (x), Exponentiel Integral  Y_p =(−E_i (x))xe^(−x)   Y=Y_h +Y_p =kxe^(−x) −E_i (x)xe^(−x) ,k∈R,x∈R_+ ^∗   (dy/dx)+y=((1+y)/x)  ⇔x(dy/dx)=y(1−x)+1  Homgenius  (dy/dx).(1/y)=((1−x)/x)⇒ln(y)=(ln(x)−x)+c⇒y=kxe^(−x)   let Y_p =k(x)xe^(−x)  particular Solution⇒  x(k′xe^(−x) +k(e^(−x) −x))+(x−1)kxe^(−x) =1  ⇒k′=(e^(−x) /x^2 )⇒k=∫(e^(−x) /x^2 ),by Part=(−(e^(−x) /x)−∫(e^(−x) /x)dx  =−(e^(−x) /x)−E_i (x)  Y_p =(−(e^(−x) /x)−E_i (x))xe^(−x) +kxe^(−x) ,k∈R
$${if}\:\frac{{dy}}{{dx}}+{y}=\mathrm{1}+\frac{{y}}{{x}},{x}\in\mathbb{R}^{\ast} \\ $$$$\Leftrightarrow\frac{{dy}}{{dx}}+{y}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)=\mathrm{1}…{W} \\ $$$${Homgenius} \\ $$$$\Rightarrow\frac{{dy}}{{dx}}+{y}\left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)=\mathrm{0} \\ $$$$\Leftrightarrow\frac{{dy}}{{y}}=\left(\frac{\mathrm{1}}{{x}}−\mathrm{1}\right){dx},{x} \\ $$$$\Rightarrow{ln}\left({y}\right)=\left({ln}\left({x}\right)−{x}\right) \\ $$$$\Rightarrow{y}={kxe}^{−{x}} ,{k}\:{Constante} \\ $$$${General}\:{y}_{{p}} \left({x}\right)={k}\left({x}\right){xe}^{−{x}} ,{Solution}\:{of}\:..{W} \\ $$$${k}'{xe}^{−{x}} +\left({e}^{−{x}} −{xe}^{−{x}} \right){k}\left({x}\right)+{kxe}^{−{x}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)=\mathrm{1} \\ $$$$\Rightarrow{k}'\left({x}\right)=\frac{{e}^{−{x}} }{{x}}\Rightarrow{k}\left({x}\right)=\int\frac{{e}^{−{x}} }{{x}}=−{E}_{{i}} \left({x}\right),\:{Exponentiel}\:{Integral} \\ $$$${Y}_{{p}} =\left(−{E}_{{i}} \left({x}\right)\right){xe}^{−{x}} \\ $$$${Y}={Y}_{{h}} +{Y}_{{p}} ={kxe}^{−{x}} −{E}_{{i}} \left({x}\right){xe}^{−{x}} ,{k}\in\mathbb{R},{x}\in\mathbb{R}_{+} ^{\ast} \\ $$$$\frac{{dy}}{{dx}}+{y}=\frac{\mathrm{1}+{y}}{{x}} \\ $$$$\Leftrightarrow{x}\frac{{dy}}{{dx}}={y}\left(\mathrm{1}−{x}\right)+\mathrm{1} \\ $$$${Homgenius} \\ $$$$\frac{{dy}}{{dx}}.\frac{\mathrm{1}}{{y}}=\frac{\mathrm{1}−{x}}{{x}}\Rightarrow{ln}\left({y}\right)=\left({ln}\left({x}\right)−{x}\right)+{c}\Rightarrow{y}={kxe}^{−{x}} \\ $$$${let}\:{Y}_{{p}} ={k}\left({x}\right){xe}^{−{x}} \:{particular}\:{Solution}\Rightarrow \\ $$$${x}\left({k}'{xe}^{−{x}} +{k}\left({e}^{−{x}} −{x}\right)\right)+\left({x}−\mathrm{1}\right){kxe}^{−{x}} =\mathrm{1} \\ $$$$\Rightarrow{k}'=\frac{{e}^{−{x}} }{{x}^{\mathrm{2}} }\Rightarrow{k}=\int\frac{{e}^{−{x}} }{{x}^{\mathrm{2}} },{by}\:{Part}=\left(−\frac{{e}^{−{x}} }{{x}}−\int\frac{{e}^{−{x}} }{{x}}{dx}\right. \\ $$$$=−\frac{{e}^{−{x}} }{{x}}−{E}_{{i}} \left({x}\right) \\ $$$${Y}_{{p}} =\left(−\frac{{e}^{−{x}} }{{x}}−{E}_{{i}} \left({x}\right)\right){xe}^{−{x}} +{kxe}^{−{x}} ,{k}\in\mathbb{R} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *