Menu Close

If-ellipse-x-2-a-2-y-2-b-2-1-a-gt-b-is-rotated-about-x-axis-find-the-surface-of-the-solid-of-revolution-




Question Number 87296 by ajfour last updated on 03/Apr/20
If  ellipse  (x^2 /a^2 )+(y^2 /b^2 )=1  (a>b)  is rotated about x-axis, find the  surface of the solid of revolution.
Ifellipsex2a2+y2b2=1(a>b)isrotatedaboutxaxis,findthesurfaceofthesolidofrevolution.
Answered by mr W last updated on 04/Apr/20
let μ=(b/a)  x=a cos θ  y=b sin θ  dx=−a sin θ dθ  dy=b cos θ dθ  ds=(√((dx)^2 +(dy)^2 ))=(√(a^2 sin^2  θ+b^2 cos^2  θ))dθ  S=2×2π∫_0 ^(π/2) b sin θ (√(a^2 sin^2  θ+b^2 cos^2  θ))dθ  =4πab∫_0 ^(π/2) sin θ (√(sin^2  θ+μ^2 cos^2  θ))dθ  =4πab∫_(π/2) ^0 (√(1−(1−μ^2 )cos^2  θ))d(cos θ)  =4πab∫_0 ^1 (√(1−kt^2 ))dt  with k=1−μ^2 , t=cos θ  =...  =4πab[((sin^(−1) (√k)t)/(2(√k)))+((t(√(1−kt^2 )))/2)]_0 ^1   =4πab[((sin^(−1) (√k))/(2(√k)))+((√(1−k))/2)]  =2πab[((sin^(−1) (√(1−μ^2 )))/( (√(1−μ^2 ))))+μ] with μ=(b/a)    with a=b ⇒sphere a=b=R,μ=1  S=2πR^2 (1+1)=4πR^2
letμ=bax=acosθy=bsinθdx=asinθdθdy=bcosθdθds=(dx)2+(dy)2=a2sin2θ+b2cos2θdθS=2×2π0π2bsinθa2sin2θ+b2cos2θdθ=4πab0π2sinθsin2θ+μ2cos2θdθ=4πabπ201(1μ2)cos2θd(cosθ)=4πab011kt2dtwithk=1μ2,t=cosθ==4πab[sin1kt2k+t1kt22]01=4πab[sin1k2k+1k2]=2πab[sin11μ21μ2+μ]withμ=bawitha=bspherea=b=R,μ=1S=2πR2(1+1)=4πR2
Commented by ajfour last updated on 04/Apr/20
Exactly, thanks Sir.  S=2πb^2 +2πab(((sin^(−1) λ)/λ))     λ=((√(a^2 −b^2 ))/a) .
Exactly,thanksSir.S=2πb2+2πab(sin1λλ)λ=a2b2a.

Leave a Reply

Your email address will not be published. Required fields are marked *