Menu Close

if-equation-sin-x-sec-x-2tan-x-1-0-has-roots-x-1-amp-x-2-then-the-possible-value-of-sin-x-1-cos-x-2-a-4-5-b-3-4-c-4-3-d-3-2-e-2-




Question Number 87419 by john santu last updated on 04/Apr/20
if equation sin x + sec x −2tan x −1 = 0  has roots x_1  & x_2  , then the   possible value of sin x_1 −cos x_2  ?  (a) 4/5     (b) 3/4     (c) 4/3   (d) 3/2    (e) 2
ifequationsinx+secx2tanx1=0hasrootsx1&x2,thenthepossiblevalueofsinx1cosx2?(a)4/5(b)3/4(c)4/3(d)3/2(e)2
Commented by john santu last updated on 04/Apr/20
how sir your solution
howsiryoursolution
Commented by MJS last updated on 04/Apr/20
none of these  for 0≤x<2π I get x=0∨x≈2.44853
noneofthesefor0x<2πIgetx=0x2.44853
Commented by john santu last updated on 04/Apr/20
my solution   let tan x = t   (t/( (√(1+t^2 )))) + (√(1+t^2 )) −2t −1 = 0  ((t^2 +t+1)/( (√(1+t^2 )))) = 2t+1   t^2 +t+1 = (2t+1)(√(1+t^2 ))
mysolutionlettanx=tt1+t2+1+t22t1=0t2+t+11+t2=2t+1t2+t+1=(2t+1)1+t2
Commented by john santu last updated on 04/Apr/20
if cos x_1 +cos x_2  = 2.  correct mr Mjs ?  from t_1  = 0  we get x = 2πn  { ((x_1 =0)),((x_2  = 2π)) :}
ifcosx1+cosx2=2.correctmrMjs?fromt1=0wegetx=2πn{x1=0x2=2π
Commented by MJS last updated on 04/Apr/20
this is somehow true but the given equation  has infinite solutions and it′s asked for 2  solutions x_1  and x_2 . I think x_1 ≠x_2 ∧x_1 ≠x_2 +2nπ  but anyway sin x_1  −cos x_2  ≠ any of the  given options  the question is very strange...
thisissomehowtruebutthegivenequationhasinfinitesolutionsanditsaskedfor2solutionsx1andx2.Ithinkx1x2x1x2+2nπbutanywaysinx1cosx2anyofthegivenoptionsthequestionisverystrange
Commented by john santu last updated on 04/Apr/20
yes sir i agree
yessiriagree
Answered by MJS last updated on 04/Apr/20
t=tan (x/2) ⇔ x=2arctan t  ((−2t(t^3 −3t^2 +t−1))/(t^4 −1))=0  t_1 =0  t^3 −3t^2 +t−1=0  t=z+1  z^3 −2z−2=0  D=(((−2)^3 )/(27))+(((−2)^2 )/4)=((19)/(27))>0 ⇒ Cardano  z=((1+((√(57))/9)))^(1/3) +((1−((√(57))/9)))^(1/3)   ⇒ t_2 =1+((1+((√(57))/9)))^(1/3) +((1−((√(57))/9)))^(1/3) ≈2.76929  ⇒  x_1 =0  x_2 =2arctan (1+((1+((√(57))/9)))^(1/3) +((1−((√(57))/9)))^(1/3) ) ≈2.44853
t=tanx2x=2arctant2t(t33t2+t1)t41=0t1=0t33t2+t1=0t=z+1z32z2=0D=(2)327+(2)24=1927>0Cardanoz=1+5793+15793t2=1+1+5793+157932.76929x1=0x2=2arctan(1+1+5793+15793)2.44853
Commented by john santu last updated on 04/Apr/20
i′m stuck in Cardano sir
imstuckinCardanosir
Commented by MJS last updated on 04/Apr/20
x^3 +ax^2 +bx+c=0  let x=t−(a/3)  t^3 −((a^2 −3b)/3)t+((2a^3 −9ab+27c)/(27))=0  −((a^2 −3b)/3)=p∧((2a^3 −9ab+27c)/(27))=q  t^3 +pt+q=0  D=(p^3 /(27))+(q^2 /4)  { ((>0 ⇒ Cardano)),((<0 ⇒ trigonimetric solution)) :}    Cardano  u=((−(q/2)+(√((p^3 /(27))+(q^2 /4)))))^(1/3) v=((−(q/2)−(√((p^3 /(27))+(q^2 /4)))))^(1/3)        [we need the real roots i.e. ((−1))^(1/3) =−1]  t_1 =u+v  t_2 =(−(1/2)−((√3)/2)i)u+(−(1/2)+((√3)/2)i)v  t_3 =(−(1/2)+((√3)/2)i)u+(−(1/2)−((√3)/2)i)v    trigononetric solution  t_(j+1) =((2(√(−3p)))/3)sin (((2jπ)/3)−(1/3)arcsin ((3(√3)q)/(2p(√(−p)))))  with j=0, 1, 2
x3+ax2+bx+c=0letx=ta3t3a23b3t+2a39ab+27c27=0a23b3=p2a39ab+27c27=qt3+pt+q=0D=p327+q24{>0Cardano<0trigonimetricsolutionCardanou=q2+p327+q243v=q2p327+q243[weneedtherealrootsi.e.13=1]t1=u+vt2=(1232i)u+(12+32i)vt3=(12+32i)u+(1232i)vtrigononetricsolutiontj+1=23p3sin(2jπ313arcsin33q2pp)withj=0,1,2

Leave a Reply

Your email address will not be published. Required fields are marked *