Menu Close

If-equation-x-2-y-2-x-4-2-y-2-x-2-y-3-2-x-4-2-y-3-2-10-x-2y-5z-has-solution-is-a-b-c-find-a-2b-3c-




Question Number 83871 by jagoll last updated on 07/Mar/20
If equation    { (((√(x^2 +y^2 ))+(√((x−4)^2 +y^2 ))+(√(x^2 +(y−3)^2 ))+(√((x−4)^2 +(y−3)^2 ))=10)),((x+2y= 5z)) :}  has solution is (a,b,c).   find a+2b+3c
$$\mathrm{If}\:\mathrm{equation}\: \\ $$$$\begin{cases}{\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{10}}\\{\mathrm{x}+\mathrm{2y}=\:\mathrm{5z}}\end{cases} \\ $$$$\mathrm{has}\:\mathrm{solution}\:\mathrm{is}\:\left(\mathrm{a},\mathrm{b},\mathrm{c}\right).\: \\ $$$$\mathrm{find}\:\mathrm{a}+\mathrm{2b}+\mathrm{3c}\: \\ $$
Commented by mr W last updated on 07/Mar/20
way 1:  let f(x,y)=(√(x^2 +y^2 ))+(√((x−4)^2 +y^2 ))+(√(x^2 +(y−3)^2 ))+(√((x−4)^2 +(y−3)^2 ))  with (∂f/∂x)=0, (∂f/∂y)=0  you can get f(x,y)_(min) =10 at x=2, y=(3/2)  ⇒f(x,y)=10 has only one solution:  x=2 and y=(3/2).    way 2:  LHS=(√(x^2 +y^2 ))+(√((x−4)^2 +y^2 ))+(√(x^2 +(y−3)^2 ))+(√((x−4)^2 +(y−3)^2 ))  is the sum of distances from a point  (x,y) to the 4 vertices of a rectangle  with side lengthes 4 and 3.  the smallest sum is when this point  is at the center of the rectangle which  lies at (2,(3/2)). the smallest sum is the  lengthes of both diagonals, i.e. 2×5=10.  that means LHS≥10. for LHS=10  there is only one solution:  x=2, y=(3/2).
$${way}\:\mathrm{1}: \\ $$$${let}\:{f}\left({x},{y}\right)=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$${with}\:\frac{\partial{f}}{\partial{x}}=\mathrm{0},\:\frac{\partial{f}}{\partial{y}}=\mathrm{0} \\ $$$${you}\:{can}\:{get}\:{f}\left({x},{y}\right)_{{min}} =\mathrm{10}\:{at}\:{x}=\mathrm{2},\:{y}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow{f}\left({x},{y}\right)=\mathrm{10}\:{has}\:{only}\:{one}\:{solution}: \\ $$$${x}=\mathrm{2}\:{and}\:{y}=\frac{\mathrm{3}}{\mathrm{2}}. \\ $$$$ \\ $$$${way}\:\mathrm{2}: \\ $$$${LHS}=\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }+\sqrt{\mathrm{x}^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{x}−\mathrm{4}\right)^{\mathrm{2}} +\left(\mathrm{y}−\mathrm{3}\right)^{\mathrm{2}} } \\ $$$${is}\:{the}\:{sum}\:{of}\:{distances}\:{from}\:{a}\:{point} \\ $$$$\left({x},{y}\right)\:{to}\:{the}\:\mathrm{4}\:{vertices}\:{of}\:{a}\:{rectangle} \\ $$$${with}\:{side}\:{lengthes}\:\mathrm{4}\:{and}\:\mathrm{3}. \\ $$$${the}\:{smallest}\:{sum}\:{is}\:{when}\:{this}\:{point} \\ $$$${is}\:{at}\:{the}\:{center}\:{of}\:{the}\:{rectangle}\:{which} \\ $$$${lies}\:{at}\:\left(\mathrm{2},\frac{\mathrm{3}}{\mathrm{2}}\right).\:{the}\:{smallest}\:{sum}\:{is}\:{the} \\ $$$${lengthes}\:{of}\:{both}\:{diagonals},\:{i}.{e}.\:\mathrm{2}×\mathrm{5}=\mathrm{10}. \\ $$$${that}\:{means}\:{LHS}\geqslant\mathrm{10}.\:{for}\:{LHS}=\mathrm{10} \\ $$$${there}\:{is}\:{only}\:{one}\:{solution}: \\ $$$${x}=\mathrm{2},\:{y}=\frac{\mathrm{3}}{\mathrm{2}}. \\ $$
Commented by mr W last updated on 07/Mar/20
x=a=2, y=b=(3/2), z=c=1  a+2b+3z=2+3+3=8
$${x}={a}=\mathrm{2},\:{y}={b}=\frac{\mathrm{3}}{\mathrm{2}},\:{z}={c}=\mathrm{1} \\ $$$${a}+\mathrm{2}{b}+\mathrm{3}{z}=\mathrm{2}+\mathrm{3}+\mathrm{3}=\mathrm{8} \\ $$
Commented by jagoll last updated on 07/Mar/20
how to got it sir?
$$\mathrm{how}\:\mathrm{to}\:\mathrm{got}\:\mathrm{it}\:\mathrm{sir}? \\ $$
Commented by jagoll last updated on 07/Mar/20
why your answer blank sir
$$\mathrm{why}\:\mathrm{your}\:\mathrm{answer}\:\mathrm{blank}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *