Menu Close

If-f-A-B-given-by-3-f-x-2-x-4-is-a-bijection-then-find-A-and-B-if-possible-




Question Number 13283 by Tinkutara last updated on 17/May/17
If f : A → B given by 3^(f(x))  + 2^(−x)  = 4 is  a bijection, then find A and B if possible.
$$\mathrm{If}\:{f}\::\:{A}\:\rightarrow\:{B}\:\mathrm{given}\:\mathrm{by}\:\mathrm{3}^{{f}\left({x}\right)} \:+\:\mathrm{2}^{−{x}} \:=\:\mathrm{4}\:\mathrm{is} \\ $$$$\mathrm{a}\:\mathrm{bijection},\:\mathrm{then}\:\mathrm{find}\:{A}\:\mathrm{and}\:{B}\:\mathrm{if}\:\mathrm{possible}. \\ $$
Answered by 433 last updated on 17/May/17
f(A)=B  3^(f(x)) =4−2^(−x)   f(x)=((ln (4−2^(−x) ))/(ln 3))  A={4−2^(−x) >0}={4>2^(−x) }=  {2^2 >2^(−x) }={2>−x}={x>−2}=(−2,+∞)  x>−2⇔−x<2⇔0<2^(−x) <4  ⇔−4<−2^(−x) <0⇔0<4−2^(−x) <4  ⇔−∞<ln (4−2^(−x) )<ln 4  ⇔^(ln 3>0) −∞<((ln (4−2^(−x) ))/(ln 3))<((ln 4)/(ln 3))  B=(−∞,((ln 4)/(ln 3)))
$${f}\left({A}\right)={B} \\ $$$$\mathrm{3}^{{f}\left({x}\right)} =\mathrm{4}−\mathrm{2}^{−{x}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{ln}\:\left(\mathrm{4}−\mathrm{2}^{−{x}} \right)}{\mathrm{ln}\:\mathrm{3}} \\ $$$${A}=\left\{\mathrm{4}−\mathrm{2}^{−{x}} >\mathrm{0}\right\}=\left\{\mathrm{4}>\mathrm{2}^{−{x}} \right\}= \\ $$$$\left\{\mathrm{2}^{\mathrm{2}} >\mathrm{2}^{−{x}} \right\}=\left\{\mathrm{2}>−{x}\right\}=\left\{{x}>−\mathrm{2}\right\}=\left(−\mathrm{2},+\infty\right) \\ $$$${x}>−\mathrm{2}\Leftrightarrow−{x}<\mathrm{2}\Leftrightarrow\mathrm{0}<\mathrm{2}^{−{x}} <\mathrm{4} \\ $$$$\Leftrightarrow−\mathrm{4}<−\mathrm{2}^{−{x}} <\mathrm{0}\Leftrightarrow\mathrm{0}<\mathrm{4}−\mathrm{2}^{−{x}} <\mathrm{4} \\ $$$$\Leftrightarrow−\infty<\mathrm{ln}\:\left(\mathrm{4}−\mathrm{2}^{−{x}} \right)<\mathrm{ln}\:\mathrm{4} \\ $$$$\overset{\mathrm{ln}\:\mathrm{3}>\mathrm{0}} {\Leftrightarrow}−\infty<\frac{\mathrm{ln}\:\left(\mathrm{4}−\mathrm{2}^{−{x}} \right)}{\mathrm{ln}\:\mathrm{3}}<\frac{\mathrm{ln}\:\mathrm{4}}{\mathrm{ln}\:\mathrm{3}} \\ $$$${B}=\left(−\infty,\frac{\mathrm{ln}\:\mathrm{4}}{\mathrm{ln}\:\mathrm{3}}\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *