Menu Close

If-f-R-1-1-is-defined-by-f-x-x-x-1-x-2-then-prove-that-f-1-x-sgn-x-x-1-x-




Question Number 13595 by Tinkutara last updated on 21/May/17
If f : R → (−1, 1) is defined by  f(x) = ((−x∣x∣)/(1 + x^2 )) , then prove that  f^(−1) (x) = −sgn(x)(√((∣x∣)/(1 − ∣x∣)))
Iff:R(1,1)isdefinedbyf(x)=xx1+x2,thenprovethatf1(x)=sgn(x)x1x
Answered by mrW1 last updated on 21/May/17
f(x)=y = ((−x∣x∣)/(1 + x^2 ))  if y≥0⇒x≤0⇒∣x∣=−x    ..(i)  if y≤0⇒x≥0⇒∣x∣=x    ..(ii)    (i):  y = (x^2 /(1 + x^2 ))  (1−y)x^2 =y  x=−(√(y/(1−y)))     (for y≥0, x≤0)  (ii):  y = −(x^2 /(1 + x^2 ))  (1+y)x^2 =−y  x=(√((−y)/(1+y)))      (for y≤0, x≥0)    for both (i) and (ii):  x=−sgn(y)(√((∣y∣)/(1−∣y∣)))   ⇒f^(−1) (x)=−sgn(x)(√((∣x∣)/(1−∣x∣)))
f(x)=y=xx1+x2ify0x0⇒∣x∣=x..(i)ify0x0⇒∣x∣=x..(ii)(i):y=x21+x2(1y)x2=yx=y1y(fory0,x0)(ii):y=x21+x2(1+y)x2=yx=y1+y(fory0,x0)forboth(i)and(ii):x=sgn(y)y1yf1(x)=sgn(x)x1x
Commented by Tinkutara last updated on 21/May/17
Thanks Sir!
ThanksSir!

Leave a Reply

Your email address will not be published. Required fields are marked *