Menu Close

If-f-R-R-is-an-odd-function-such-that-a-f-1-x-1-f-x-b-x-2-f-1-x-f-x-x-0-Then-find-f-x-




Question Number 33375 by rahul 19 last updated on 15/Apr/18
If f:R → R is an odd function such  that :  a) f(1+x) = 1+f(x) .  b) x^2  f((1/x)) = f(x) , x≠0.  Then find f(x) ?
Iff:RRisanoddfunctionsuchthat:a)f(1+x)=1+f(x).b)x2f(1x)=f(x),x0.Thenfindf(x)?
Commented by prof Abdo imad last updated on 15/Apr/18
f is odd⇒f(0)=0 ⇒f(1+0)=1+f(0)⇒f(1)=1  f(2)=f(1+1)=1+f(1) =2  let suppose f(n)=n ⇒f(n+1)=1+f(n)=1+n⇒  ∀n∈N f(n)=n if n∈Z^−  n=−m  f(n)=f(−m)=−f(m)=−m =n ⇒  ∀n∈Z f(n)=n   f(1)=f((n/n))=nf((1/n))=1⇒f((1/n))=(1/n)  f((p/n))=f((1/n) +..+(1/n))(p×) =pf((1/n))=(p/n)  ⇒ ∀x∈Q f(x)=x   but Q is dense inside R ⇒  ∀x∈R f(x)=x  we have for x≠o  x^2 f((1/x))=x^2 .(1/x) =x =f(x) cond.b is verified.
fisoddf(0)=0f(1+0)=1+f(0)f(1)=1f(2)=f(1+1)=1+f(1)=2letsupposef(n)=nf(n+1)=1+f(n)=1+nnNf(n)=nifnZn=mf(n)=f(m)=f(m)=m=nnZf(n)=nf(1)=f(nn)=nf(1n)=1f(1n)=1nf(pn)=f(1n+..+1n)(p×)=pf(1n)=pnxQf(x)=xbutQisdenseinsideRxRf(x)=xwehaveforxox2f(1x)=x2.1x=x=f(x)cond.bisverified.
Commented by rahul 19 last updated on 15/Apr/18
thank you sir !
thankyousir!

Leave a Reply

Your email address will not be published. Required fields are marked *