Menu Close

If-F-sin-A-a-W-sin-A-prove-that-tan-A-W-sin-a-W-cos-a-F-




Question Number 20648 by Joel577 last updated on 30/Aug/17
If  (F/(sin (A − a))) = (W/(sin A)),  prove that  tan A = ((W sin a)/(W cos a − F))
$$\mathrm{If}\:\:\frac{{F}}{\mathrm{sin}\:\left({A}\:−\:{a}\right)}\:=\:\frac{{W}}{\mathrm{sin}\:{A}},\:\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{tan}\:{A}\:=\:\frac{{W}\:\mathrm{sin}\:{a}}{{W}\:\mathrm{cos}\:{a}\:−\:{F}} \\ $$
Answered by $@ty@m last updated on 30/Aug/17
Given,   (F/(sin (A − a))) = (W/(sin A))  ⇒FsinA=Wsin(A−a)  ⇒FsinA=WsinAcosa−WcosAsina  ⇒FtanA=WtanAcosa−WsinA               (dividing the eqn. by cosA)  ⇒WsinA=tanA(Wcosa−F)
$${Given}, \\ $$$$\:\frac{{F}}{\mathrm{sin}\:\left({A}\:−\:{a}\right)}\:=\:\frac{{W}}{\mathrm{sin}\:{A}} \\ $$$$\Rightarrow{FsinA}={Wsin}\left({A}−{a}\right) \\ $$$$\Rightarrow{FsinA}={WsinAcosa}−{WcosAsina} \\ $$$$\Rightarrow{FtanA}={WtanAcosa}−{WsinA} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\left({dividing}\:{the}\:{eqn}.\:{by}\:{cosA}\right) \\ $$$$\Rightarrow{WsinA}={tanA}\left({Wcosa}−{F}\right) \\ $$
Commented by Joel577 last updated on 31/Aug/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *