Menu Close

If-f-tan-2-2-2-1-cos-find-f-sin-2-




Question Number 155527 by ZiYangLee last updated on 01/Oct/21
If f(tan^2  (θ/2))= (2/(1+cos θ)) , find f(sin (θ/2)).
Iff(tan2θ2)=21+cosθ,findf(sinθ2).
Answered by Ar Brandon last updated on 01/Oct/21
f(tan^2 (ϑ/2))=(2/(1+cosϑ))  f(((sin^2 (ϑ/2))/(1−sin^2 (ϑ/2))))=(1/(1−sin^2 (ϑ/2))) ⇒f((x^2 /(1−x^2 )))=(1/(1−x^2 ))  (x^2 /(1−x^2 ))=y⇒(y+1)x^2 −y=0⇒x=±(√(y/(y+1)))  f(y)=(1/(1−(y/(y+1))))=((y+1)/1)=y+1 ⇒f(sin(ϑ/2))=sin(ϑ/2)+1
f(tan2ϑ2)=21+cosϑf(sin2ϑ21sin2ϑ2)=11sin2ϑ2f(x21x2)=11x2x21x2=y(y+1)x2y=0x=±yy+1f(y)=11yy+1=y+11=y+1f(sinϑ2)=sinϑ2+1
Answered by mr W last updated on 02/Oct/21
f(tan^2  (θ/2))=(2/(1+cos θ))=(2/(1+2 cos^2  (θ/2)−1))  f(tan^2  (θ/2))=(1/(cos^2  (θ/2)))=1+tan^2  (θ/2)  ⇒f(x)=1+x  f(sin (θ/2))=1+sin (θ/2)
f(tan2θ2)=21+cosθ=21+2cos2θ21f(tan2θ2)=1cos2θ2=1+tan2θ2f(x)=1+xf(sinθ2)=1+sinθ2

Leave a Reply

Your email address will not be published. Required fields are marked *