Menu Close

If-f-x-0-4-e-t-x-dt-0-x-4-maximum-value-of-f-x-is-




Question Number 39338 by rahul 19 last updated on 05/Jul/18
If f(x) = ∫_0 ^4  e^(∣t−x∣)  dt    (0≤x≤4),  maximum value of f(x) is = ?
Iff(x)=04etxdt(0x4),maximumvalueoff(x)is=?
Commented by math khazana by abdo last updated on 06/Jul/18
we have f(x)= ∫_0 ^x  e^(x−t∣) dt +∫_x ^4  e^(t−x)  dt  =e^x   [ −e^(−t) ]_0 ^x   +e^(−x)  [ e^t ]_x ^4   =e^x (1−e^(−x) ) +e^(−x) ( e^4  −e^x )  =e^x  −1 +e^4  e^(−x)  −1 =e^x  +e^4  e^(−x)  −2  f^′ (x)= e^x  −e^4  e^(−x)  =e^x (1−e^4  e^(−2x) )so  f^′ (x)=0 ⇔ 1−e^4  e^(−2x) =0⇔e^(−2x)  = e^(−4)  ⇔x=2  f^′ (x)≥0 ⇔ 1−e^4  e^(−2x) ≥0 ⇔e^4  e^(−2x)  ≤1 ⇔  e^(−2x) ≤ e^(−4)   ⇔ −2x≤−4 ⇔ x≥2  so f is  increazing on [2,4] decreasing on [0,2]⇒  max f(x)=f(0) or f(4) but  f(0)=e^4  −1  and f(4) =e^4  −1 =f(0) ⇒  max f(x)=f(0)=e^4  −1
wehavef(x)=0xextdt+x4etxdt=ex[et]0x+ex[et]x4=ex(1ex)+ex(e4ex)=ex1+e4ex1=ex+e4ex2f(x)=exe4ex=ex(1e4e2x)sof(x)=01e4e2x=0e2x=e4x=2f(x)01e4e2x0e4e2x1e2xe42x4x2sofisincreazingon[2,4]decreasingon[0,2]maxf(x)=f(0)orf(4)butf(0)=e41andf(4)=e41=f(0)maxf(x)=f(0)=e41
Commented by rahul 19 last updated on 05/Jul/18
prof ans is (e⁴ - 1 )
Answered by ajfour last updated on 05/Jul/18
f(x)∣_(max) =∫_0 ^(  4) e^t dt  = e^4 −1 .
f(x)max=04etdt=e41.
Commented by rahul 19 last updated on 05/Jul/18
Thank you sir .
Answered by MJS last updated on 06/Jul/18
(d/dx)[∫e^(∣t−x∣) dt]=−e^(∣t−x∣)  ⇒  ⇒ (d/dx)[∫_0 ^4 e^(∣t−x∣) dt]=−e^(∣4−x∣) +e^(∣x∣) =f′(x)  f′′(x)=sign(4−x)e^(∣4−x∣) +sign(x)e^(∣x∣)   f′(x)=0 ⇒ ∣x∣=∣4−x∣ ⇒ x=2  f′′(2)=2e^2 >0 ⇒ f(x) has an absolute minimum       at x=2 ⇒ maximum is at the borders of       given interval ⇒ max(f(x))=f(0)=f(4)=e^4 −1
ddx[etxdt]=etxddx[40etxdt]=e4x+ex=f(x)f(x)=sign(4x)e4x+sign(x)exf(x)=0x∣=∣4xx=2f(2)=2e2>0f(x)hasanabsoluteminimumatx=2maximumisatthebordersofgivenintervalmax(f(x))=f(0)=f(4)=e41

Leave a Reply

Your email address will not be published. Required fields are marked *