Question Number 39338 by rahul 19 last updated on 05/Jul/18

Commented by math khazana by abdo last updated on 06/Jul/18
![we have f(x)= ∫_0 ^x e^(x−t∣) dt +∫_x ^4 e^(t−x) dt =e^x [ −e^(−t) ]_0 ^x +e^(−x) [ e^t ]_x ^4 =e^x (1−e^(−x) ) +e^(−x) ( e^4 −e^x ) =e^x −1 +e^4 e^(−x) −1 =e^x +e^4 e^(−x) −2 f^′ (x)= e^x −e^4 e^(−x) =e^x (1−e^4 e^(−2x) )so f^′ (x)=0 ⇔ 1−e^4 e^(−2x) =0⇔e^(−2x) = e^(−4) ⇔x=2 f^′ (x)≥0 ⇔ 1−e^4 e^(−2x) ≥0 ⇔e^4 e^(−2x) ≤1 ⇔ e^(−2x) ≤ e^(−4) ⇔ −2x≤−4 ⇔ x≥2 so f is increazing on [2,4] decreasing on [0,2]⇒ max f(x)=f(0) or f(4) but f(0)=e^4 −1 and f(4) =e^4 −1 =f(0) ⇒ max f(x)=f(0)=e^4 −1](https://www.tinkutara.com/question/Q39481.png)
Commented by rahul 19 last updated on 05/Jul/18
prof ans is (e⁴ - 1 )
Answered by ajfour last updated on 05/Jul/18

Commented by rahul 19 last updated on 05/Jul/18
Thank you sir .
Answered by MJS last updated on 06/Jul/18
![(d/dx)[∫e^(∣t−x∣) dt]=−e^(∣t−x∣) ⇒ ⇒ (d/dx)[∫_0 ^4 e^(∣t−x∣) dt]=−e^(∣4−x∣) +e^(∣x∣) =f′(x) f′′(x)=sign(4−x)e^(∣4−x∣) +sign(x)e^(∣x∣) f′(x)=0 ⇒ ∣x∣=∣4−x∣ ⇒ x=2 f′′(2)=2e^2 >0 ⇒ f(x) has an absolute minimum at x=2 ⇒ maximum is at the borders of given interval ⇒ max(f(x))=f(0)=f(4)=e^4 −1](https://www.tinkutara.com/question/Q39428.png)