Menu Close

If-f-x-2cos-2-x-2-1-3-cos-x-then-find-the-range-of-R-f-




Question Number 182332 by mnjuly1970 last updated on 07/Dec/22
  If  ,   f (x) = 2cos^( 2) ((x/2)) −⌊ (1/3) +cos(x) ⌋    then find the range of :   R_( f)
$$ \\ $$$$\mathrm{If}\:\:,\:\:\:{f}\:\left({x}\right)\:=\:\mathrm{2}{cos}^{\:\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:−\lfloor\:\frac{\mathrm{1}}{\mathrm{3}}\:+{cos}\left({x}\right)\:\rfloor \\ $$$$\:\:{then}\:{find}\:{the}\:{range}\:{of}\::\:\:\:{R}_{\:{f}} \\ $$
Answered by floor(10²Eta[1]) last updated on 07/Dec/22
−1≤cosx≤1⇒((−2)/3)≤(1/3)+cosx≤(4/3)  ⇒−1≤⌊(1/3)+cosx⌋≤1⇒−1≤−⌊(1/3)+cosx⌋≤1  0≤2cos^2 ((x/2))≤2  ⇒−1≤f(x)≤3
$$−\mathrm{1}\leqslant\mathrm{cosx}\leqslant\mathrm{1}\Rightarrow\frac{−\mathrm{2}}{\mathrm{3}}\leqslant\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{cosx}\leqslant\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$\Rightarrow−\mathrm{1}\leqslant\lfloor\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{cosx}\rfloor\leqslant\mathrm{1}\Rightarrow−\mathrm{1}\leqslant−\lfloor\frac{\mathrm{1}}{\mathrm{3}}+\mathrm{cosx}\rfloor\leqslant\mathrm{1} \\ $$$$\mathrm{0}\leqslant\mathrm{2cos}^{\mathrm{2}} \left(\frac{\mathrm{x}}{\mathrm{2}}\right)\leqslant\mathrm{2} \\ $$$$\Rightarrow−\mathrm{1}\leqslant\mathrm{f}\left(\mathrm{x}\right)\leqslant\mathrm{3} \\ $$$$ \\ $$
Answered by mnjuly1970 last updated on 08/Dec/22
   f(x)= 1+cos(x) −⌊ (1/3) + cos(x) ⌋                = (1/3) + cos(x)−⌊(1/3_  ) +cos(x)⌋+(2/3)    ∀ u∈R ,         0≤ u−⌊u⌋ <1   ⇒ f(x)∈ [(2/3) , (5/3) )
$$\:\:\:{f}\left({x}\right)=\:\mathrm{1}+{cos}\left({x}\right)\:−\lfloor\:\frac{\mathrm{1}}{\mathrm{3}}\:+\:{cos}\left({x}\right)\:\rfloor \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:+\:{cos}\left({x}\right)−\lfloor\frac{\mathrm{1}}{\mathrm{3}_{\:} }\:+{cos}\left({x}\right)\rfloor+\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\:\:\forall\:{u}\in\mathbb{R}\:,\:\:\:\:\:\:\:\:\:\mathrm{0}\leqslant\:{u}−\lfloor{u}\rfloor\:<\mathrm{1}\:\:\:\Rightarrow\:{f}\left({x}\right)\in\:\left[\frac{\mathrm{2}}{\mathrm{3}}\:,\:\frac{\mathrm{5}}{\mathrm{3}}\:\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *