Menu Close

if-f-x-3x-3-px-2-4x-8-and-x-1-is-a-factor-of-f-x-a-find-the-value-of-p-with-these-value-of-p-b-solve-the-equation-f-x-0-if-and-are-roots-of-f-x-c-find-and-d-




Question Number 39827 by Rio Mike last updated on 11/Jul/18
if f(x) = 3x^3  + px^2  + 4x − 8  and (x − 1) is a factor of   f(x).  a) find the value of p.  with these value of p  b) solve the equation f(x) = 0.  if α and β are roots of   f(x),   c) find α + β and αβ  d) Evaluate α^2  + β^2  hence α − β
iff(x)=3x3+px2+4x8and(x1)isafactoroff(x).a)findthevalueofp.withthesevalueofpb)solvetheequationf(x)=0.ifαandβarerootsoff(x),c)findα+βandαβd)Evaluateα2+β2henceαβ
Answered by MJS last updated on 11/Jul/18
3(x−1)(x−α)(x−β)=3x^3 +px^2 +4x−8  3x^3 −3(α+β+1)x^2 +3(α+αβ+β)x−3αβ=  =3x^3 +px^2 +4x−8  ⇒  p=−3(α+β+1)  3(α+αβ+β)=4  3αβ=8 ⇒ α=(8/(3β))  3((8/(3β))+(8/(3β))β+β)=4 ⇒ β^2 +(4/3)β+(8/3)=0 ⇒  ⇒ β=−(2/3)±((2(√5))/3)i  ⇒ α=−(2/3)∓((2(√5))/3)i  ⇒ p=1  α+β=−(4/3)  αβ=(8/3)  α^2 +β^2 =−((32)/9)  α−β=±((4(√5))/3)i
3(x1)(xα)(xβ)=3x3+px2+4x83x33(α+β+1)x2+3(α+αβ+β)x3αβ==3x3+px2+4x8p=3(α+β+1)3(α+αβ+β)=43αβ=8α=83β3(83β+83ββ+β)=4β2+43β+83=0β=23±253iα=23253ip=1α+β=43αβ=83α2+β2=329αβ=±453i
Commented by Rio Mike last updated on 12/Jul/18
the cubic expression is of   the form   y = ax^(3 ) + bx^2  + cx + d  so what is α+β^ =?  and αβ=?
thecubicexpressionisoftheformy=ax3+bx2+cx+dsowhatisα+β=?andαβ=?
Commented by MJS last updated on 12/Jul/18
α, β are  the roots besides 1 which is given in  this case.  ax^3 +bx^2 +cx+d=a(x−α)(x−β)(x−γ)=  =a(x^3 −(α+β+γ)x^2 +(αβ+αγ+βγ)x−αβγ)  in our case γ=1 leads to  a(x^3 −(α+β+1)x^2 +(α+αβ+β)x−αβ)
α,βaretherootsbesides1whichisgiveninthiscase.ax3+bx2+cx+d=a(xα)(xβ)(xγ)==a(x3(α+β+γ)x2+(αβ+αγ+βγ)xαβγ)inourcaseγ=1leadstoa(x3(α+β+1)x2+(α+αβ+β)xαβ)
Answered by Rasheed.Sindhi last updated on 13/Jul/18
AnOther approach  If f(x) is divided by x−1 then the  quotient Q(x) and remainder R can  be determined by synthetic division:   (((1) 3),(   p),(   4),(  −8)),(,(   3),(p+3),(  p+7)),((      3),(p+3),(p+7),(∣p−1^(−) )) )  ∵ x−1 is factor of f(x)  ∴R=p−1=0⇒p=1    (a)  Q(x)=3x^2 +(p+3)x+(p+7)            =3x^2 +(1+3)x+(1+7)            =3x^2 +4x+8  f(x)=(x−1).Q(x)+R    [Relation between divedend,divisor & remainder]           =(x−1).Q(x)+0           =(x−1)(3x^2 +4x+8)  (b)  f(x)=0⇒x−1=0  ∣  3x^2 +4x+8=0                 x=1 ∣ x=((−4±(√(16−96)))/6)                           ∣ x=((−2±2i(√5))/3)  Let α & β are the roots of 3x^2 +4x+8=0      α+β=−(4/3)  &  αβ=(8/3)      α−β=((−2+2i(√5))/3)−((−2−2i(√5))/3)                 =((4(√5))/3)i  α^2 +β^2 =(α+β)^2 −2αβ=(−(4/3))^2 −2((8/3))              =((16)/9)−((16)/3)=((16−48)/9)=−((32)/9)
AnOtherapproachIff(x)isdividedbyx1thenthequotientQ(x)andremainderRcanbedeterminedbysyntheticdivision:(1)3p483p+3p+73p+3p+7p1)x1isfactoroff(x)R=p1=0p=1(a)Q(x)=3x2+(p+3)x+(p+7)=3x2+(1+3)x+(1+7)=3x2+4x+8f(x)=(x1).Q(x)+R[Relationbetweendivedend,divisor&remainder]=(x1).Q(x)+0=(x1)(3x2+4x+8)(b)f(x)=0x1=03x2+4x+8=0x=1x=4±16966x=2±2i53Letα&βaretherootsof3x2+4x+8=0α+β=43&αβ=83αβ=2+2i5322i53=453iα2+β2=(α+β)22αβ=(43)22(83)=169163=16489=329

Leave a Reply

Your email address will not be published. Required fields are marked *