Menu Close

If-f-x-4-x-4-x-2-find-f-1-17-f-16-17-




Question Number 150469 by mathdanisur last updated on 12/Aug/21
If   f(x) = (4^x /(4^x  + 2))   find   f((1/(17))) + f(((16)/(17))) =^(?)
$$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{4}^{\boldsymbol{\mathrm{x}}} }{\mathrm{4}^{\boldsymbol{\mathrm{x}}} \:+\:\mathrm{2}}\:\:\:\mathrm{find}\:\:\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{17}}\right)\:+\:\mathrm{f}\left(\frac{\mathrm{16}}{\mathrm{17}}\right)\:\overset{?} {=} \\ $$
Answered by gsk2684 last updated on 12/Aug/21
f(x)+f(1−x) =(4^x /(4^x +2))+(4^(1−z) /(4^(1−x) +2))  =(4^x /(4^x +2))+(4/(4+2.4^x ))=(4^x /(4^x +2))+(2/(2+4^x ))=1  f(x)+f(1−x)=1⇒f((1/(17)))+f(((16)/(17)))=1
$${f}\left({x}\right)+{f}\left(\mathrm{1}−{x}\right)\:=\frac{\mathrm{4}^{{x}} }{\mathrm{4}^{{x}} +\mathrm{2}}+\frac{\mathrm{4}^{\mathrm{1}−{z}} }{\mathrm{4}^{\mathrm{1}−{x}} +\mathrm{2}} \\ $$$$=\frac{\mathrm{4}^{{x}} }{\mathrm{4}^{{x}} +\mathrm{2}}+\frac{\mathrm{4}}{\mathrm{4}+\mathrm{2}.\mathrm{4}^{{x}} }=\frac{\mathrm{4}^{{x}} }{\mathrm{4}^{{x}} +\mathrm{2}}+\frac{\mathrm{2}}{\mathrm{2}+\mathrm{4}^{{x}} }=\mathrm{1} \\ $$$${f}\left({x}\right)+{f}\left(\mathrm{1}−{x}\right)=\mathrm{1}\Rightarrow{f}\left(\frac{\mathrm{1}}{\mathrm{17}}\right)+{f}\left(\frac{\mathrm{16}}{\mathrm{17}}\right)=\mathrm{1} \\ $$
Commented by mathdanisur last updated on 12/Aug/21
Thank You Ser
$$\mathrm{Thank}\:\mathrm{You}\:\mathrm{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *