Menu Close

If-f-x-5-g-2x-1-Find-2f-1-x-A-g-1-x-11-D-g-1-x-2-6-B-g-1-x-9-E-g-1-2x-6-C-g-1-x-6-




Question Number 13099 by Joel577 last updated on 14/May/17
If f(x + 5) = g(2x −1)  Find 2f^(−1) (x)    (A) g^(−1) (x) + 11        (D) g^(−1) (x/2) + 6  (B) g^(−1) (x) + 9           (E) g^(−1) (2x) + 6  (C) g^(−1) (x) + 6
$$\mathrm{If}\:{f}\left({x}\:+\:\mathrm{5}\right)\:=\:{g}\left(\mathrm{2}{x}\:−\mathrm{1}\right) \\ $$$$\mathrm{Find}\:\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$ \\ $$$$\left(\mathrm{A}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{11}\:\:\:\:\:\:\:\:\left(\mathrm{D}\right)\:{g}^{−\mathrm{1}} \left({x}/\mathrm{2}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{B}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{E}\right)\:{g}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\:+\:\mathrm{6} \\ $$$$\left(\mathrm{C}\right)\:{g}^{−\mathrm{1}} \left({x}\right)\:+\:\mathrm{6} \\ $$
Answered by 433 last updated on 14/May/17
h(x)=x+5 & k(x)=2x−1  foh=gok  f=gokoh^(−1)   f^(−1) =hok^(−1) g^(−1)   2f^(−1) =2(hok^(−1) g^(−1) )  k^(−1) (x)=((x+1)/2)  2f^(−1) (x)=2h(k^(−1) (g^(−1) )(x)  =2h(((g^(−1) (x)+1)/2))  =2(((g^(−1) (x)+1)/2)+5)=g^(−1) (x)+1+10  =g^(−1) (x)+11
$${h}\left({x}\right)={x}+\mathrm{5}\:\&\:{k}\left({x}\right)=\mathrm{2}{x}−\mathrm{1} \\ $$$${foh}={gok} \\ $$$${f}={gokoh}^{−\mathrm{1}} \\ $$$${f}^{−\mathrm{1}} ={hok}^{−\mathrm{1}} {g}^{−\mathrm{1}} \\ $$$$\mathrm{2}{f}^{−\mathrm{1}} =\mathrm{2}\left({hok}^{−\mathrm{1}} {g}^{−\mathrm{1}} \right) \\ $$$${k}^{−\mathrm{1}} \left({x}\right)=\frac{{x}+\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right)=\mathrm{2}{h}\left({k}^{−\mathrm{1}} \left({g}^{−\mathrm{1}} \right)\left({x}\right)\right. \\ $$$$=\mathrm{2}{h}\left(\frac{{g}^{−\mathrm{1}} \left({x}\right)+\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\mathrm{2}\left(\frac{{g}^{−\mathrm{1}} \left({x}\right)+\mathrm{1}}{\mathrm{2}}+\mathrm{5}\right)={g}^{−\mathrm{1}} \left({x}\right)+\mathrm{1}+\mathrm{10} \\ $$$$={g}^{−\mathrm{1}} \left({x}\right)+\mathrm{11} \\ $$
Commented by Joel577 last updated on 15/May/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$
Answered by mrW1 last updated on 14/May/17
f(x + 5) = g(2x −1)=u  ⇒x+5=f^(−1) (u)     ...(i)  ⇒2x−1=g^(−1) (u)   ...(ii)  2×(i)−(ii):  ⇒11=2f^(−1) (u)−g^(−1) (u)  ⇒2f^(−1) (u)=g^(−1) (u)+11  ⇒2f^(−1) (x)=g^(−1) (x)+11    ⇒Answer (A)
$${f}\left({x}\:+\:\mathrm{5}\right)\:=\:{g}\left(\mathrm{2}{x}\:−\mathrm{1}\right)={u} \\ $$$$\Rightarrow{x}+\mathrm{5}={f}^{−\mathrm{1}} \left({u}\right)\:\:\:\:\:…\left({i}\right) \\ $$$$\Rightarrow\mathrm{2}{x}−\mathrm{1}={g}^{−\mathrm{1}} \left({u}\right)\:\:\:…\left({ii}\right) \\ $$$$\mathrm{2}×\left({i}\right)−\left({ii}\right): \\ $$$$\Rightarrow\mathrm{11}=\mathrm{2}{f}^{−\mathrm{1}} \left({u}\right)−{g}^{−\mathrm{1}} \left({u}\right) \\ $$$$\Rightarrow\mathrm{2}{f}^{−\mathrm{1}} \left({u}\right)={g}^{−\mathrm{1}} \left({u}\right)+\mathrm{11} \\ $$$$\Rightarrow\mathrm{2}{f}^{−\mathrm{1}} \left({x}\right)={g}^{−\mathrm{1}} \left({x}\right)+\mathrm{11} \\ $$$$ \\ $$$$\Rightarrow{Answer}\:\left({A}\right) \\ $$
Commented by RasheedSindhi last updated on 14/May/17
Easy n simple!
$$\mathcal{E}\mathrm{asy}\:\mathrm{n}\:\mathrm{simple}! \\ $$
Commented by Joel577 last updated on 15/May/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *