Question Number 151081 by malwan last updated on 18/Aug/21
$${if}\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c} \\ $$$${and}\:{f}\left({x}+\mathrm{3}\right)=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}\:{find} \\ $$$$\left.\mathrm{1}\left.\right)\:{a}+{b}+{c}\:\:\:\:\:\mathrm{2}\right)\:{a}−{b}+{c} \\ $$
Answered by mr W last updated on 18/Aug/21
$${f}\left(\mathrm{1}\right)={a}+{b}+{c}={f}\left(−\mathrm{2}+\mathrm{3}\right)=\mathrm{7}\left(−\mathrm{2}\right)^{\mathrm{2}} +\mathrm{2}\left(−\mathrm{2}\right)+\mathrm{5}=\mathrm{29} \\ $$$${f}\left(−\mathrm{1}\right)={a}−{b}+{c}={f}\left(−\mathrm{4}+\mathrm{3}\right)=\mathrm{7}\left(−\mathrm{4}\right)^{\mathrm{2}} +\mathrm{2}\left(−\mathrm{4}\right)+\mathrm{5}=\mathrm{109} \\ $$
Commented by malwan last updated on 18/Aug/21
$${thank}\:{you}\:{sir} \\ $$
Commented by Rasheed.Sindhi last updated on 18/Aug/21
$$\mathbb{N}{i}\mathbb{C}{e}! \\ $$
Answered by Rasheed.Sindhi last updated on 18/Aug/21
$${f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}\:\wedge\:{f}\left({x}+\mathrm{3}\right)=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5} \\ $$$$\left.\mathrm{1}\left.\right){a}+{b}+{c}=?\:\:\:\:\mathrm{2}\right){a}−{b}+{c}=? \\ $$$$−.−.−.−.−.−.−.− \\ $$$${a}\left({x}+\mathrm{3}\right)^{\mathrm{2}} +{b}\left({x}+\mathrm{3}\right)+{c}=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5} \\ $$$${a}\left({x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{9}\right)+{b}\left({x}+\mathrm{3}\right)+{c}=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5} \\ $$$${ax}^{\mathrm{2}} +\left(\mathrm{6}{a}+{b}\right){x}+\mathrm{9}{a}+\mathrm{3}{b}+{c}=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5} \\ $$$${a}=\mathrm{7}\:\wedge\:\mathrm{6}{a}+{b}=\mathrm{2}\:\wedge\:\mathrm{9}{a}+\mathrm{3}{b}+{c}=\mathrm{5} \\ $$$${a}=\mathrm{7}\Rightarrow{b}=−\mathrm{40}\Rightarrow{c}=\mathrm{5}−\mathrm{63}+\mathrm{120}=\mathrm{62} \\ $$$${a}+{b}+{c}=\mathrm{7}+\left(−\mathrm{40}\right)+\mathrm{62}=\mathrm{29} \\ $$$${a}−{b}+{c}=\mathrm{7}−\left(−\mathrm{40}\right)+\mathrm{62}=\mathrm{109}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$
Commented by malwan last updated on 18/Aug/21
$${thank}\:{you}\:{sir} \\ $$
Answered by Rasheed.Sindhi last updated on 18/Aug/21
$$\underset{\left({i}\right)} {\underbrace{{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}}}\:\wedge\:\underset{\left({ii}\right)} {\underbrace{{f}\left({x}+\mathrm{3}\right)=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}} \\ $$$$\left.\mathrm{1}\left.\right){a}+{b}+{c}\:\:\:\:\mathrm{2}\right){a}−{b}+{c} \\ $$$$\Lleftarrow\ll−.−.−.−\gg\Rrightarrow \\ $$$$\left({i}\right):\:\:\:\:\:\:\:\:\:{f}\left({x}\right)={ax}^{\mathrm{2}} +{bx}+{c}……….{A} \\ $$$$\left({ii}\right)\Rightarrow{f}\left({x}−\mathrm{3}+\mathrm{3}\right)=\mathrm{7}\left({x}−\mathrm{3}\right)^{\mathrm{2}} +\mathrm{2}\left({x}−\mathrm{3}\right)+\mathrm{5} \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow{f}\left({x}\right)=\mathrm{7}{x}^{\mathrm{2}} −\mathrm{40}{x}+\mathrm{62}…..{B} \\ $$$${A}\:\&\:{B}\Rightarrow{a}=\mathrm{7},{b}=−\mathrm{40},{c}=\mathrm{62} \\ $$$${a}+{b}+{c}=\mathrm{7}−\mathrm{40}+\mathrm{62}=\mathrm{29} \\ $$$${a}−{b}+{c}=\mathrm{7}+\mathrm{40}+\mathrm{62}=\mathrm{109} \\ $$