Menu Close

If-f-x-continue-in-1-30-and-6-30-f-x-dx-30-then-1-9-f-3y-3-dy-




Question Number 109546 by bemath last updated on 24/Aug/20
If f(x) continue in [ 1,30] and   ∫_6 ^(30) f(x)dx = 30, then ∫_1 ^9 f(3y+3)dy = __
Iff(x)continuein[1,30]and306f(x)dx=30,then91f(3y+3)dy=__
Commented by kaivan.ahmadi last updated on 24/Aug/20
t=3y+3⇒dt=3dy⇒dy=(1/3)dt  y=1⇒t=6  y=9⇒t=30  (1/3)∫_6 ^(30) f(t)dt=(1/3)×30=10
t=3y+3dt=3dydy=13dty=1t=6y=9t=3013630f(t)dt=13×30=10
Commented by bemath last updated on 24/Aug/20
cooll..thanks
cooll..thanks
Answered by 1549442205PVT last updated on 24/Aug/20
Put x=3y+3⇒dx=3dy.Then  ∫_1 ^( 9) f(3y+3)dy=(1/3)∫_6 ^( 30) f(x)dx=(1/3)×30=10
Putx=3y+3dx=3dy.Then19f(3y+3)dy=13630f(x)dx=13×30=10

Leave a Reply

Your email address will not be published. Required fields are marked *