Menu Close

if-f-x-f-x-find-what-is-f-x-




Question Number 182039 by liuxinnan last updated on 03/Dec/22
if f′′′(x)=f(x)  find what is f(x)
$${if}\:{f}'''\left({x}\right)={f}\left({x}\right) \\ $$$${find}\:{what}\:{is}\:{f}\left({x}\right)\: \\ $$
Answered by FelipeLz last updated on 03/Dec/22
f′′′(x)−f(x) = 0  f(x) = e^(rx)  → r^3 e^(rx) −e^(rx)  = 0  e^(rx) (r^3 −1) = 0  e^(rx)  ≠ 0 ∀x → r^3 −1 = 0  (r−1)(r^2 +r+1) = 0  r_1  = 1, r_2  = −(1/2)(1−(√3)i), r_3  = −(1/2)(1+(√3)i)  f(x) = c_1 e^x +c_2 (1/( (√e^x )))cos(((√3)/2)x)+c_3 (1/( (√e^x )))sin(((√3)/2)x)
$${f}'''\left({x}\right)−{f}\left({x}\right)\:=\:\mathrm{0} \\ $$$${f}\left({x}\right)\:=\:{e}^{{rx}} \:\rightarrow\:{r}^{\mathrm{3}} {e}^{{rx}} −{e}^{{rx}} \:=\:\mathrm{0} \\ $$$${e}^{{rx}} \left({r}^{\mathrm{3}} −\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$${e}^{{rx}} \:\neq\:\mathrm{0}\:\forall{x}\:\rightarrow\:{r}^{\mathrm{3}} −\mathrm{1}\:=\:\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)\:=\:\mathrm{0} \\ $$$${r}_{\mathrm{1}} \:=\:\mathrm{1},\:{r}_{\mathrm{2}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\sqrt{\mathrm{3}}{i}\right),\:{r}_{\mathrm{3}} \:=\:−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\sqrt{\mathrm{3}}{i}\right) \\ $$$${f}\left({x}\right)\:=\:{c}_{\mathrm{1}} {e}^{{x}} +{c}_{\mathrm{2}} \frac{\mathrm{1}}{\:\sqrt{{e}^{{x}} }}\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)+{c}_{\mathrm{3}} \frac{\mathrm{1}}{\:\sqrt{{e}^{{x}} }}\mathrm{sin}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *