Menu Close

If-f-x-g-x-f-x-g-x-find-the-function-of-f-x-




Question Number 110456 by bobhans last updated on 29/Aug/20
   If (f(x).g(x))′ = f(x)′ . g(x)′    find the function of f(x) .
If(f(x).g(x))=f(x).g(x)findthefunctionoff(x).
Answered by bemath last updated on 29/Aug/20
(d/dx)(f(x).g(x))=f(x)′.g(x)+f(x).g(x)′  then given condition   ⇒f(x)′.g(x)+f(x).g′(x)=f(x)′.g(x)′  ⇒f(x)′.g(x)−f(x)′.g(x)′=−f(x).g(x)′  ⇒f(x)′(g(x)−g(x)′)=−f(x).g(x)′  ⇒ ((f(x)′)/(f(x))) = ((g(x)′)/(g(x)′−g(x)))  ∫ ((f(x)′)/(f(x)))dx = ∫ ((g(x)′)/(g(x)′−g(x)))dx  ⇒ln (f(x))= ∫((g(x)′)/(g(x)′−g(x)))dx+c  ⇒f(x) = C.exp(∫((g(x)′)/(g(x)′−g(x)))dx)  ∴ f(x) = C.e^(∫(((g(x)′)/(g(x)′−g(x)))dx))
ddx(f(x).g(x))=f(x).g(x)+f(x).g(x)thengivenconditionf(x).g(x)+f(x).g(x)=f(x).g(x)f(x).g(x)f(x).g(x)=f(x).g(x)f(x)(g(x)g(x))=f(x).g(x)f(x)f(x)=g(x)g(x)g(x)f(x)f(x)dx=g(x)g(x)g(x)dxln(f(x))=g(x)g(x)g(x)dx+cf(x)=C.exp(g(x)g(x)g(x)dx)f(x)=C.e(g(x)g(x)g(x)dx)
Commented by bobhans last updated on 29/Aug/20
great....
great.

Leave a Reply

Your email address will not be published. Required fields are marked *