Menu Close

if-f-x-is-2-nd-digre-function-f-x-1-f-x-f-x-1-x-2-1-then-faind-f-2-




Question Number 173678 by mathlove last updated on 16/Jul/22
if f(x) is 2^(nd)  digre function     f(x−1)+f(x)+f(x+1)=x^2 +1  then faind  f(2)=?
iff(x)is2nddigrefunctionf(x1)+f(x)+f(x+1)=x2+1thenfaindf(2)=?
Answered by Rasheed.Sindhi last updated on 16/Jul/22
f(x)=ax^2 +bx+c (say)  f(x−1)=a(x−1)^2 +b(x−1)+c                  =ax^2 −2ax+a+bx−b+c                  =ax^2 +(b−2a)x+a−b+c  f(x+1)=a(x+1)^2 +b(x+1)+c                   =ax^2 +2ax+a+bx+b+c                   =ax^2 +(b+2a)x+a+b+c    f(x−1)+f(x)+f(x+1)     =(ax^2 +(b−2a)x+a−b+c)             +(ax^2 +bx+c)                    +(ax^2 +(b+2a)x+a+b+c)                                                               =x^2 +1  3ax^2 +3bx+2a+3c=x^2 +0x+1  3a=1,3b=0,2a+3c=1  a=1/3 ,b=0, 2(1/3)+3c=1                              c=1/9  f(x)=ax^2 +bx+c=(1/3)x^2 +(1/9)=((3x^2 +1)/9)  f(2)=((3(2)^2 +1)/9)=((13)/9)
f(x)=ax2+bx+c(say)f(x1)=a(x1)2+b(x1)+c=ax22ax+a+bxb+c=ax2+(b2a)x+ab+cf(x+1)=a(x+1)2+b(x+1)+c=ax2+2ax+a+bx+b+c=ax2+(b+2a)x+a+b+cf(x1)+f(x)+f(x+1)=(ax2+(b2a)x+ab+c)+(ax2+bx+c)+(ax2+(b+2a)x+a+b+c)=x2+13ax2+3bx+2a+3c=x2+0x+13a=1,3b=0,2a+3c=1a=1/3,b=0,2(1/3)+3c=1c=1/9f(x)=ax2+bx+c=13x2+19=3x2+19f(2)=3(2)2+19=139
Commented by mathlove last updated on 16/Jul/22
a lot of thinks heve you launge life
alotofthinksheveyoulaungelife
Commented by Rasheed.Sindhi last updated on 16/Jul/22
ThanX,  you′ve too sir!
ThanX,youvetoosir!
Commented by Tawa11 last updated on 16/Jul/22
Great sir
Greatsir
Answered by Rasheed.Sindhi last updated on 16/Jul/22
 determinant (((AnOther  Way)))  Let f(x)=ax^2 +bx+c    f(−2)=4a−2b+c........(i)  f(−1)=a−b+c...........(ii)  f(0)=c.........................(iii)  f(1)=a+b+c................(iv)  f(2)=4a+2b+c...........(v)    (i)+(ii)+(iii):  f(−2)+f(−1)+f(0)=(−1)^2 +1  5a−3b+3c=2..................A  (ii)+(iii)+(iv):  f(−1)+f(0)+f(1)=0^2 +1  2a+3c=1..........................B  (iii)+(iv)+(v):  f(0)+f(1)+f(2)=1^2 +1=2  5a+3b+3c=2.....................C    C−A: 6b=0⇒b=0   {: ((A=C:    5a+3c=2)),((B:            2a+3c=1)) }⇒ { ((3a=1⇒a=(1/3))),((c=(1/9))) :}  f(x)=ax^2 +bx+c=(1/3)x^2 +0x+(1/9)          =((3x^2 +1)/9)
AnOtherWayLetf(x)=ax2+bx+cf(2)=4a2b+c..(i)f(1)=ab+c..(ii)f(0)=c.(iii)f(1)=a+b+c.(iv)f(2)=4a+2b+c..(v)(i)+(ii)+(iii):f(2)+f(1)+f(0)=(1)2+15a3b+3c=2A(ii)+(iii)+(iv):f(1)+f(0)+f(1)=02+12a+3c=1..B(iii)+(iv)+(v):f(0)+f(1)+f(2)=12+1=25a+3b+3c=2CCA:6b=0b=0A=C:5a+3c=2B:2a+3c=1}{3a=1a=13c=19f(x)=ax2+bx+c=13x2+0x+19=3x2+19
Commented by mathlove last updated on 16/Jul/22
pleas sir see this work  f(x−1)+f(x)+f(x−1)=f(2)  f(x−1+x+x+1)=f(2)  f(3x)=f(2)⇒3x=2⇒x=(2/3)  we have x^2 +1  ((2/3))^2 +1=(4/9)+1=((13)/9)
pleassirseethisworkf(x1)+f(x)+f(x1)=f(2)f(x1+x+x+1)=f(2)f(3x)=f(2)3x=2x=23wehavex2+1(23)2+1=49+1=139
Commented by Rasheed.Sindhi last updated on 16/Jul/22
I didn′t understand:  f(x−1)+f(x)+f(x+1)            =^(?) f(x−1+x+x+1)=^(?) f(2)  Could you determine f(3) etc  using above approach?
Ididntunderstand:f(x1)+f(x)+f(x+1)=?f(x1+x+x+1)=?f(2)Couldyoudeterminef(3)etcusingaboveapproach?
Commented by mathlove last updated on 17/Jul/22
thats ok wrung way
thatsokwrungway
Commented by Tawa11 last updated on 17/Jul/22
Great sir
Greatsir
Answered by pablo1234523 last updated on 16/Jul/22
f(x)=k(x−a)(x−b)  f(x−1)=k(x−(a+1))(x−(b+1))  f(x+1)=k(x−(a−1))(x−(b−1))  f(x−1)+f(x)+f(x+1)=x^2 +1  ⇒k(x−a)(x−b)+k(x−(a+1))(x−(b+1))+k(x−(a−1))(x−(b−1))=x^2 +1    sum of constant terms:  ab+ab+a+b+1+ab−a−b+1=1/k  ⇒3ab=(1−2k)/k  ⇒ab=((1−2k)/(3k))  sum of coefficient of x:  (a+b)+(a+b+2)+(a+b−2)=0  3(a+b)=0  a=−b  sum of coefficient of x^2 :  k+k+k=1  ⇒3k=1  ⇒k=(1/3)    ∴ b^2 =((−1)/3)⇒b=(i/( (√3)))⇒a=−(i/( (√3)))  f(x)=(1/3)(x−(i/( (√3))))(x+(i/( (√3))))=(1/3)(x^2 +(1/3))  f(2)=(1/3)(4+(1/3))=((13)/9)
f(x)=k(xa)(xb)f(x1)=k(x(a+1))(x(b+1))f(x+1)=k(x(a1))(x(b1))f(x1)+f(x)+f(x+1)=x2+1k(xa)(xb)+k(x(a+1))(x(b+1))+k(x(a1))(x(b1))=x2+1sumofconstantterms:ab+ab+a+b+1+abab+1=1/k3ab=(12k)/kab=12k3ksumofcoefficientofx:(a+b)+(a+b+2)+(a+b2)=03(a+b)=0a=bsumofcoefficientofx2:k+k+k=13k=1k=13b2=13b=i3a=i3f(x)=13(xi3)(x+i3)=13(x2+13)f(2)=13(4+13)=139
Commented by mathlove last updated on 17/Jul/22
thinks
thinks

Leave a Reply

Your email address will not be published. Required fields are marked *