Question Number 115267 by bobhans last updated on 24/Sep/20
$${If}\:{f}\left({x}\right)\:{is}\:{a}\:{differentiable}\:{function} \\ $$$${defined}\:\:\forall{x}\in\mathbb{R}\:{such}\:{that}\:\left({f}\left({x}\right)\right)^{\mathrm{3}} −{x}+{f}\left({x}\right)=\mathrm{0} \\ $$$${then}\:\underset{\mathrm{0}} {\overset{\sqrt{\mathrm{2}}} {\int}}\:{f}^{−\mathrm{1}} \left({x}\right)\:{dx}\:=\: \\ $$
Answered by Olaf last updated on 24/Sep/20
$${f}^{\mathrm{3}} \left({t}\right)−{t}+{f}\left({t}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{Let}\:{t}\:=\:{f}^{−\mathrm{1}} \left({x}\right) \\ $$$$\left({f}\mathrm{o}{f}^{−\mathrm{1}} \right)^{\mathrm{3}} \left({x}\right)−{f}^{−\mathrm{1}} \left({x}\right)+{f}\mathrm{o}{f}^{−\mathrm{1}} \left({x}\right)\:=\:\mathrm{0} \\ $$$${x}^{\mathrm{3}} −{f}^{−\mathrm{1}} \left({x}\right)+{x}\:=\:\mathrm{0} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)\:=\:{x}^{\mathrm{3}} +{x} \\ $$$$\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} {f}^{−\mathrm{1}} \left({x}\right){dx}\:=\:\left[\frac{{x}^{\mathrm{4}} }{\mathrm{4}}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\sqrt{\mathrm{2}}} \:=\:\mathrm{1}+\mathrm{1}\:=\:\mathrm{2} \\ $$