Menu Close

If-f-x-is-a-polynomial-function-satisfying-f-x-f-1-x-f-x-f-1-x-x-R-0-and-f-3-28-then-f-4-is-equal-to-




Question Number 17093 by 1234Hello last updated on 02/Jul/17
If f(x) is a polynomial function  satisfying f(x).f((1/x)) = f(x) + f((1/x)) ;  x ∈ R − {0} and f(3) = 28, then f(4) is  equal to
Iff(x)isapolynomialfunctionsatisfyingf(x).f(1x)=f(x)+f(1x);xR{0}andf(3)=28,thenf(4)isequalto
Commented by prakash jain last updated on 30/Jun/17
f(x)=((f((1/x)))/(f((1/x))−1))  f(x)=((x−1)/x)  f((1/x))=1−x  f(x)+f((1/x))=((x−1)/x)+1−x=((−1+2x−x^2 )/2)  =((−(1−x)^2 )/x)  f(x)((1/x))=((−(1−x)^2 )/x)  f(x)=((x−1)/x) satisfies  f(x)f((1/x))=f(x)+f((1/x))  f(3)=(2/3)  f(4)=(3/4)  f(3)=28?
f(x)=f(1x)f(1x)1f(x)=x1xf(1x)=1xf(x)+f(1x)=x1x+1x=1+2xx22=(1x)2xf(x)(1x)=(1x)2xf(x)=x1xsatisfiesf(x)f(1x)=f(x)+f(1x)f(3)=23f(4)=34f(3)=28?
Commented by mrW1 last updated on 01/Jul/17
I think functions like this  f(x)=1+x^k  or 1−x^k , k∈R  fulfill the condiction:  f((1/x))=1±x^(−k)   f(x)f((1/x))=(1±x^k )(1±x^(−k) )=1±x^k +1±x^(−k)   =f(x)+f((1/x))    for f(3)=28  1±3^k =28 ?  ⇒1+3^3 =28  ⇒f(x)=1+x^3   ⇒f(4)=1+4^3 =65
Ithinkfunctionslikethisf(x)=1+xkor1xk,kRfulfillthecondiction:f(1x)=1±xkf(x)f(1x)=(1±xk)(1±xk)=1±xk+1±xk=f(x)+f(1x)forf(3)=281±3k=28?1+33=28f(x)=1+x3f(4)=1+43=65
Commented by mrW1 last updated on 01/Jul/17
I started with f(x)=a+bx and got  a=1 and b=±1 and then I replaced x  with x^k  without change the property  of the function. I am not sure if there  are other functions besides 1±x^k .  if no, then the answer for the question is  unique.  e.g. if f(3)=−20 then  1−3^k =−20⇒k=((ln 21)/(ln 3))≈2.77  ⇒f(4)=1−4^k =−45.607.  if f(3)=6⇒1+3^k =6⇒k=((ln 5)/(ln 3))  ⇒f(4)=1+4^k =8.62
Istartedwithf(x)=a+bxandgota=1andb=±1andthenIreplacedxwithxkwithoutchangethepropertyofthefunction.Iamnotsureifthereareotherfunctionsbesides1±xk.ifno,thentheanswerforthequestionisunique.e.g.iff(3)=20then13k=20k=ln21ln32.77f(4)=14k=45.607.iff(3)=61+3k=6k=ln5ln3f(4)=1+4k=8.62
Commented by Tinkutara last updated on 01/Jul/17
Thanks Sirs!
ThanksSirs!
Commented by prakash jain last updated on 01/Jul/17
it satisfies g(x)g((1/x))=1  and as you described  f(x)=1±g(x) is valid  solution.  coming back to what is asked in  question.  Try an alternative f(x)  g(x)=((10x−3)/(10−3x))  f(x)=((7x+7)/(10−3x))⇒f(3)=28  f((1/x))=((7+7x)/(10x−3))  f(x)+f((1/x))=((7x+7)/(10−3x))+((7+7x)/(10x−3))  =(((7x+7)(10x−3+10−3x))/((10−3x)(10x−3)))  =(((7x+7)(7x+7))/((10−3x)(10x−3)))=f(x)f((1/x))  f(4)=((7×4+7)/(10−3×4))=−((35)/2)
itsatisfiesg(x)g(1x)=1andasyoudescribedf(x)=1±g(x)isvalidsolution.comingbacktowhatisaskedinquestion.Tryanalternativef(x)g(x)=10x3103xf(x)=7x+7103xf(3)=28f(1x)=7+7x10x3f(x)+f(1x)=7x+7103x+7+7x10x3=(7x+7)(10x3+103x)(103x)(10x3)=(7x+7)(7x+7)(103x)(10x3)=f(x)f(1x)f(4)=7×4+7103×4=352
Commented by prakash jain last updated on 01/Jul/17
Thanks, mrW1!
Thanks,mrW1!
Commented by mrW1 last updated on 01/Jul/17
Do you have any ideas if there are other  types of functions with this property?  I think the function should be of the  form f(x)=1±g(x) then  f((1/x))=1±g((1/x))  f(x)f((1/x))=[1±g(x)][1±g((1/x))]  =1±g(x)+g(x)g((1/x))±g((1/x))  =f(x)+f((1/x)) if g(x)g((1/x))=1    g(x)=x^k  fulfills this condition  but are there any other function types   for g(x)?
Doyouhaveanyideasifthereareothertypesoffunctionswiththisproperty?Ithinkthefunctionshouldbeoftheformf(x)=1±g(x)thenf(1x)=1±g(1x)f(x)f(1x)=[1±g(x)][1±g(1x)]=1±g(x)+g(x)g(1x)±g(1x)=f(x)+f(1x)ifg(x)g(1x)=1g(x)=xkfulfillsthisconditionbutarethereanyotherfunctiontypesforg(x)?
Commented by prakash jain last updated on 01/Jul/17
g(x)=((ax^2 +bx+c)/(cx^2 +bx+a))  g((1/x))=(((a/x^2 )+(b/x)+c)/((c/x^2 )+(b/x)+a))=((a+bx+cx^2 )/(c+bx+ax^2 ))  g(x)g((1/x))=1
g(x)=ax2+bx+ccx2+bx+ag(1x)=ax2+bx+ccx2+bx+a=a+bx+cx2c+bx+ax2g(x)g(1x)=1
Commented by mrW1 last updated on 01/Jul/17
that′s great!  can we generase that  g(x)=((Σ_(k=0) ^n a_k x^k )/(Σ_(k=0) ^n a_(n−k) x^k ))  fulfills the condition?
thatsgreat!canwegenerasethatg(x)=nk=0akxknk=0ankxkfulfillsthecondition?
Commented by mrW1 last updated on 01/Jul/17
that means for f(3)=28 there is no  unique solution for f(4).  thank you for showing me the  right thinking direction!
thatmeansforf(3)=28thereisnouniquesolutionforf(4).thankyouforshowingmetherightthinkingdirection!
Commented by 1234Hello last updated on 02/Jul/17
Sir, I changed the question. Here  x ∈ R − {0} but in your chosen f(x)  = ((7x + 7)/(10 − 3x)), x ∈ R − {((10)/3)}. Therefore  f(x) cannot be this. But it can be when  x ∈ R − {0}.
Sir,Ichangedthequestion.HerexR{0}butinyourchosenf(x)=7x+7103x,xR{103}.Thereforef(x)cannotbethis.ButitcanbewhenxR{0}.
Commented by prakash jain last updated on 02/Jul/17
g(x)=(((ax^2 +bx+1)/(x^2 +bx+a)))  9a+3b+1=9×27+81b+27a  18a+78b=−242  9a+39b=−121  a=((−(121+39b))/9)  g(x)=((((230)/9)x^2 −9x+1)/(x^2 −9x+((230)/9)))  g(3)=((230−27+1)/(9−27+((230)/9)))=((9(230−27+1))/((81−243+230)))  =((9(204))/(68))=27  g(x)g((1/x))=1  f(3)=28  f(4)=1+g(4)=1+((230∙4^2 −81∙4+9)/(9∙4^2 −81∙4+230))  =1+((673)/(10))=((683)/(10))  −−−−−−  9x^2 −81x+230  b^2 −4ac=81^2 −4×9×230<0  so f(x) is defined.  if you want to create a function  which is undefined at x=0  choose g(x) as  ((ax^2 +bx+1)/(x^2 +bx+a))×(1/x)  g(3)=27  ((9a+3b+1)/(9+3b+a))=81  you get an equation between a and  b.  choose a value for b which gives  b^2 −4ac<0.
g(x)=(ax2+bx+1x2+bx+a)9a+3b+1=9×27+81b+27a18a+78b=2429a+39b=121a=(121+39b)9g(x)=2309x29x+1x29x+2309g(3)=23027+1927+2309=9(23027+1)(81243+230)=9(204)68=27g(x)g(1x)=1f(3)=28f(4)=1+g(4)=1+23042814+9942814+230=1+67310=683109x281x+230b24ac=8124×9×230<0sof(x)isdefined.ifyouwanttocreateafunctionwhichisundefinedatx=0chooseg(x)asax2+bx+1x2+bx+a×1xg(3)=279a+3b+19+3b+a=81yougetanequationbetweenaandb.chooseavalueforbwhichgivesb24ac<0.
Commented by mrW1 last updated on 02/Jul/17
since there are infinite possible functions:  f(x) =1±((Σ_(k=0) ^n a_k x^k )/(Σ_(k=0) ^n a_(n−k) x^k ))  with n∈N and a_0 ,a_1 ,...,a_n ∈R    there is no unique solution for   (n,a_0 ,a_1 ,...,a_n ) from the only one equation  f(3) =1±((Σ_(k=0) ^n a_k 3^k )/(Σ_(k=0) ^n a_(n−k) 3^k ))=28    therefore there is also no unique  value for f(4):  f(4) =1±((Σ_(k=0) ^n a_k 4^k )/(Σ_(k=0) ^n a_(n−k) 4^k ))
sincethereareinfinitepossiblefunctions:f(x)=1±nk=0akxknk=0ankxkwithnNanda0,a1,,anRthereisnouniquesolutionfor(n,a0,a1,,an)fromtheonlyoneequationf(3)=1±nk=0ak3knk=0ank3k=28thereforethereisalsonouniquevalueforf(4):f(4)=1±nk=0ak4knk=0ank4k
Commented by prakash jain last updated on 02/Jul/17
Ok. I missed some part in the  question. The question is  specifically asking for polynomial  function.  f(x)=1+x^3  is only correct answer.
Ok.Imissedsomepartinthequestion.Thequestionisspecificallyaskingforpolynomialfunction.f(x)=1+x3isonlycorrectanswer.
Commented by mrW1 last updated on 02/Jul/17
to 1234hello:  I think the original question was much  more interesting and challenging  than now. Even though there was no  unique answer but one may think in  all directions. I see it as a great gain  from your original question that we  know now that the requested  function which satisfies the functional  equation could and must be of the form  f(x)=1±((Σ_(k=0) ^n a_k x^k )/(Σ_(k=0) ^n a_(n−k) x^k )).    We hadn′t lernt so much if you had  said from very begining that f(x)  is a polynominal function, because  that would have restricted the direction  for our thinking.
to1234hello:Ithinktheoriginalquestionwasmuchmoreinterestingandchallengingthannow.Eventhoughtherewasnouniqueanswerbutonemaythinkinalldirections.Iseeitasagreatgainfromyouroriginalquestionthatweknownowthattherequestedfunctionwhichsatisfiesthefunctionalequationcouldandmustbeoftheformf(x)=1±nk=0akxknk=0ankxk.Wehadntlerntsomuchifyouhadsaidfromverybeginingthatf(x)isapolynominalfunction,becausethatwouldhaverestrictedthedirectionforourthinking.
Commented by 1234Hello last updated on 03/Jul/17
But this was the original question! I  was in a hurry so I first posted that  version. Thanks all for your efforts!
Butthiswastheoriginalquestion!IwasinahurrysoIfirstpostedthatversion.Thanksallforyourefforts!

Leave a Reply

Your email address will not be published. Required fields are marked *