Menu Close

If-f-x-is-a-polynomial-function-satisfying-the-relation-f-x-f-1-x-f-x-f-1-x-for-all-0-x-R-and-if-f-2-9-then-f-6-is-A-216-B-217-C-126-




Question Number 117984 by Ar Brandon last updated on 14/Oct/20
If f(x) is a polynomial function satisfying the relation                             f(x)+f((1/x))=f(x)f((1/x))  for all 0≠x∈R and if f(2)=9, then f(6) is  (A) 216            (B) 217            (C) 126            (D) 127
Iff(x)isapolynomialfunctionsatisfyingtherelationf(x)+f(1x)=f(x)f(1x)forall0xRandiff(2)=9,thenf(6)is(A)216(B)217(C)126(D)127
Answered by Ar Brandon last updated on 14/Oct/20
f(2)=9 therefore f(x) must be a non-zero polynomial.  Let f(x)=a_0 +a_1 x+a_2 x^2 +∙∙∙+a_n x^n , a_n ≠0  Suppose that f(x)+f((1/x))=f(x)f((1/x)) for all x≠0  Then Σ_(r=0) ^n a_r x^r +Σ_(r=1) ^n (a_r /x^r )=(Σ_(r=0) ^n a_r x^r )(Σ_(r=1) ^n (a_r /x^r ))  Multiplying through by x^n , we get that  Σ_(r=0) ^n a_r x^(n+r) +Σ_(r=0) ^n a_r x^(n−r) =(Σ_(r=0) ^n a_r x^r )(Σ_(r=0) ^n a_r x^(n−r) )  That is,  (a_0 x^n +a_1 x^(n+1) +∙∙∙a_n x^(2n) )+(a_0 x^n +a_1 x^(n−1) +∙∙∙+a_(n−1) x+a_n )        =(x^n +a_1 x^n +∙∙∙a_n x^n )(a_0 x^n +a_1 x^(n−1) +∙∙∙+a_(n−1) x+a_n )  Equating the corresponding coefficients of powers of x,  we have           a_n =a_0 a_n , a_(n−1) =a_0 a_(n−1) +a_1 a_n            a_(n−2) =a_2 a_n +a_1 a_(n−1) +a_(n−2) a_0            2a_0 =a_0 ^2 +a_n ^2             a_n =a_0 a_n ⇒a_0 =1 (since a_n ≠0)            a_(n−1) =a_0 a_(n−1) +a_1 a_n ⇒a_1 a_n =0⇒a_1 =0            a_(n−2) =a_2 a_n +a_1 a_(n−1) +a_(n−2) a_0 ⇒a_(n−2) =a_2 a_n +a_(n−2) ⇒a_2 =0  Continuing this process, we get that a_(n−1) =0 and 2=1+a_n ^2 .  Hence a_n =±1. Therefore                                                  f(x)=1±x^n   Since we are given that f(2)=9 we have                                    9=1±2^n   Therefore f(x) cannot be 1−x^n . Thus, f(x)=1+x^n  and  9=1+2^n  and hence n=3. So f(x)=1+x^3  and f(6)=217.
f(2)=9thereforef(x)mustbeanonzeropolynomial.Letf(x)=a0+a1x+a2x2++anxn,an0Supposethatf(x)+f(1x)=f(x)f(1x)forallx0Thennr=0arxr+nr=1arxr=(nr=0arxr)(nr=1arxr)Multiplyingthroughbyxn,wegetthatnr=0arxn+r+nr=0arxnr=(nr=0arxr)(nr=0arxnr)Thatis,(a0xn+a1xn+1+anx2n)+(a0xn+a1xn1++an1x+an)=(xn+a1xn+anxn)(a0xn+a1xn1++an1x+an)Equatingthecorrespondingcoefficientsofpowersofx,wehavean=a0an,an1=a0an1+a1anan2=a2an+a1an1+an2a02a0=a02+an2an=a0ana0=1(sincean0)an1=a0an1+a1ana1an=0a1=0an2=a2an+a1an1+an2a0an2=a2an+an2a2=0Continuingthisprocess,wegetthatan1=0and2=1+an2.Hencean=±1.Thereforef(x)=1±xnSincewearegiventhatf(2)=9wehave9=1±2nThereforef(x)cannotbe1xn.Thus,f(x)=1+xnand9=1+2nandhencen=3.Sof(x)=1+x3andf(6)=217.

Leave a Reply

Your email address will not be published. Required fields are marked *