If-f-x-is-a-polynomial-function-satisfying-the-relation-f-x-f-1-x-f-x-f-1-x-for-all-0-x-R-and-if-f-2-9-then-f-6-is-A-216-B-217-C-126- Tinku Tara June 4, 2023 Algebra 0 Comments FacebookTweetPin Question Number 117984 by Ar Brandon last updated on 14/Oct/20 Iff(x)isapolynomialfunctionsatisfyingtherelationf(x)+f(1x)=f(x)f(1x)forall0≠x∈Randiff(2)=9,thenf(6)is(A)216(B)217(C)126(D)127 Answered by Ar Brandon last updated on 14/Oct/20 f(2)=9thereforef(x)mustbeanon−zeropolynomial.Letf(x)=a0+a1x+a2x2+⋅⋅⋅+anxn,an≠0Supposethatf(x)+f(1x)=f(x)f(1x)forallx≠0Then∑nr=0arxr+∑nr=1arxr=(∑nr=0arxr)(∑nr=1arxr)Multiplyingthroughbyxn,wegetthat∑nr=0arxn+r+∑nr=0arxn−r=(∑nr=0arxr)(∑nr=0arxn−r)Thatis,(a0xn+a1xn+1+⋅⋅⋅anx2n)+(a0xn+a1xn−1+⋅⋅⋅+an−1x+an)=(xn+a1xn+⋅⋅⋅anxn)(a0xn+a1xn−1+⋅⋅⋅+an−1x+an)Equatingthecorrespondingcoefficientsofpowersofx,wehavean=a0an,an−1=a0an−1+a1anan−2=a2an+a1an−1+an−2a02a0=a02+an2an=a0an⇒a0=1(sincean≠0)an−1=a0an−1+a1an⇒a1an=0⇒a1=0an−2=a2an+a1an−1+an−2a0⇒an−2=a2an+an−2⇒a2=0Continuingthisprocess,wegetthatan−1=0and2=1+an2.Hencean=±1.Thereforef(x)=1±xnSincewearegiventhatf(2)=9wehave9=1±2nThereforef(x)cannotbe1−xn.Thus,f(x)=1+xnand9=1+2nandhencen=3.Sof(x)=1+x3andf(6)=217. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Where-is-the-quiz-Next Next post: let-P-x-1-ix-x-2-n-1-find-roots-of-P-x-and-factorize-P-x-inside-C-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.