Menu Close

If-f-x-lim-x-x-n-x-n-x-n-x-n-x-gt-1-then-xf-x-ln-x-1-x-2-1-x-2-dx-




Question Number 128540 by bramlexs22 last updated on 08/Jan/21
If f(x)=lim_(x→∞)  ((x^n −x^(−n) )/(x^n +x^(−n) )) ,x>1  then ∫ ((xf(x) ln (x+(√(1+x^2 )) ))/( (√(1+x^2 )))) dx =?
Iff(x)=limxxnxnxn+xn,x>1thenxf(x)ln(x+1+x2)1+x2dx=?
Commented by liberty last updated on 08/Jan/21
f(x)=lim_(x→∞)  ((x^(2n) −1)/(x^(2n) +1))=1  then ∫ ((x.1 ln (x+(√(1+x^2 ))))/( (√(x^2 +1)))) dx    let (√(1+x^2 )) =u ⇒ ((x dx)/( (√(1+x^2 )))) du and x=(√(u^2 −1))  ∫ ln (u+(√(u^2 −1)) ) du ; by parts  =u ln (u+(√(u^2 −1)) )−∫ ((u(1+(u/( (√(u^2 −1))))))/(u+(√(u^2 −1)))) du  =u ln (u+(√(u^2 −1)) )−∫ ((u(u+(√(u^2 −1)))(u−(√(u^2 −1)) ))/(−1(√(u^2 −1))))du  =u ln (u+(√(u^2 −1)))+∫ (u/( (√(u^2 −1)))) du  =u ln (u+(√(u^2 −1)) )+(√(u^2 −1)) + c  =(√(1+x^2 )) ln (x+(√(x^2 +1)) )+x + c
f(x)=limxx2n1x2n+1=1thenx.1ln(x+1+x2)x2+1dxlet1+x2=uxdx1+x2duandx=u21ln(u+u21)du;byparts=uln(u+u21)u(1+uu21)u+u21du=uln(u+u21)u(u+u21)(uu21)1u21du=uln(u+u21)+uu21du=uln(u+u21)+u21+c=1+x2ln(x+x2+1)+x+c
Answered by mathmax by abdo last updated on 10/Jan/21
((x^n −x^(−n) )/(x^n  +x^(−n) ))=((x^(2n) −1)/(x^(2n)  +1))  we have x>1 ⇒lim_(x→+∞) ((x^n −x^(−n) )/(x^n  +x^(−n) ))=1 ⇒  I =∫  ((xf(x)ln(x+(√(1+x^2 ))))/( (√(1+x^2 ))))dx =∫ ((xln(x+(√(1+x^2 ))))/( (√(1+x^2 ))))dx we do the ch.  x=sht ⇒I =∫  ((shtln(sht+cht))/(cht))cht =∫ sh(t)ln(e^t )dt  =∫ t ×sh(t)dt = tch(t)−∫ ch(t)dt =tch(t)−sht C  =argsh(x)(√(1+x^2 )) −x +C  =(√(1+x^2 ))ln(x+(√(1+x^2 )))−x +C
xnxnxn+xn=x2n1x2n+1wehavex>1limx+xnxnxn+xn=1I=xf(x)ln(x+1+x2)1+x2dx=xln(x+1+x2)1+x2dxwedothech.x=shtI=shtln(sht+cht)chtcht=sh(t)ln(et)dt=t×sh(t)dt=tch(t)ch(t)dt=tch(t)shtC=argsh(x)1+x2x+C=1+x2ln(x+1+x2)x+C

Leave a Reply

Your email address will not be published. Required fields are marked *