Menu Close

if-f-x-log-1-2ax-log-1-bx-x-x-0-k-x-0-is-continuous-at-x-0-then-k-




Question Number 63922 by raj last updated on 11/Jul/19
if f(x)= { (((log (1+2ax)−log (1−bx))/x),(x≠0)),(k,(x=0)) :}  is continuous at x=0 then k=?
iff(x)={log(1+2ax)log(1bx)xx0kx=0iscontinuousatx=0thenk=?
Commented by kaivan.ahmadi last updated on 11/Jul/19
lim_(x→0) f(x)=^(hop) lim_(x→0  ) ((2a)/(ln10×(1+2ax)))−((−b)/(ln10×(1−bx)))=  ((2a)/(ln10))+(b/(ln10))=((2a+b)/(ln10))  k=f(0)=lim_(x→0) f(x)=((2a+b)/(ln10))
limx0f(x)=hoplimx02aln10×(1+2ax)bln10×(1bx)=2aln10+bln10=2a+bln10k=f(0)=limx0f(x)=2a+bln10
Commented by mathmax by abdo last updated on 12/Jul/19
at V(0) log(1+2ax)∼((2ax)/(ln(10)))  and log(1−bx)∼((−bx)/(ln(10))) ⇒  ((log(1+2ax)−log(1−bx))/x) ∼((2ax+bx)/(xln(10))) =((2a+b)/(ln(10)))  f continue at x_0 =0 ⇒lim_(x→0) f(x)=f(0)=k ⇒k=((2a+b)/(ln(10)))
atV(0)log(1+2ax)2axln(10)andlog(1bx)bxln(10)log(1+2ax)log(1bx)x2ax+bxxln(10)=2a+bln(10)fcontinueatx0=0limx0f(x)=f(0)=kk=2a+bln(10)
Commented by raj last updated on 11/Jul/19
thank you
thankyou
Commented by Mikael last updated on 11/Jul/19
f(0)=k  lim_(x→0)  ((log(1+2ax)−log(1−bx))/x)=lim_(x→0)  ((log(((1+2ax)/(1−bx))))/x)=lim_(x→0)  log(((1+2ax)/(1−bx)))^(1/x)   log lim_(u→∞)  (((1+2a(1/u))/(1−b(1/u))))^u = log e^(lim_(u→∞) (((1+2a(1/u))/(1−b(1/u))) −1).u) = log e^(lim_(u→∞)  (((2a+b)/1)))   log e^(2a+b)  = (2a+b).log e = (((2a+b))/(ln10))  f(0) = lim_(x→0)  f(x)  k = ((2a+b)/(ln10))
f(0)=klimx0log(1+2ax)log(1bx)x=limx0log(1+2ax1bx)x=limx0log(1+2ax1bx)1xloglimu(1+2a1u1b1u)u=logelimu(1+2a1u1b1u1).u=logelimu(2a+b1)loge2a+b=(2a+b).loge=(2a+b)ln10f(0)=limx0f(x)k=2a+bln10

Leave a Reply

Your email address will not be published. Required fields are marked *