Menu Close

If-f-x-log-8x-find-i-f-1-x-ii-f-1-2-




Question Number 152349 by otchereabdullai@gmail.com last updated on 27/Aug/21
If f(x)=log_(8x )  , find   (i) f^(−1) (x)  (ii) f^(−1) (2)
$$\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{log}_{\mathrm{8x}\:} \:,\:\mathrm{find}\: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{x}\right) \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{f}^{−\mathrm{1}} \left(\mathrm{2}\right) \\ $$
Commented by otchereabdullai@gmail.com last updated on 27/Aug/21
Exactly prof W typo error . Am much  grateful God bless you!
$$\mathrm{Exactly}\:\mathrm{prof}\:\mathrm{W}\:\mathrm{typo}\:\mathrm{error}\:.\:\mathrm{Am}\:\mathrm{much} \\ $$$$\mathrm{grateful}\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}!\: \\ $$
Commented by mr W last updated on 27/Aug/21
i think you meant f(x)=log_8  x.  y=log_8  x  ⇒x=8^y   ⇒f^(−1) (x)=8^x   ⇒f^(−1) (2)=8^2 =64
$${i}\:{think}\:{you}\:{meant}\:{f}\left({x}\right)=\mathrm{log}_{\mathrm{8}} \:{x}. \\ $$$${y}=\mathrm{log}_{\mathrm{8}} \:{x} \\ $$$$\Rightarrow{x}=\mathrm{8}^{{y}} \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left({x}\right)=\mathrm{8}^{{x}} \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left(\mathrm{2}\right)=\mathrm{8}^{\mathrm{2}} =\mathrm{64} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *