Menu Close

If-f-x-sin-cos-x-pi-x-f-pi-2-




Question Number 187695 by mnjuly1970 last updated on 20/Feb/23
     If ,  f( x )= ((  sin_  (cos (x) ))/( ^ (√( (π/x)))))      ⇒   f ′ ((( π)/2) ) = ?
If,f(x)=sin(cos(x))πxf(π2)=?
Answered by horsebrand11 last updated on 20/Feb/23
f(x)=(((√x) sin (cos x))/( (√π)))    f ′((π/2))=lim_(x→(π/2)) ((f(x)−f((π/2)))/(x−(π/2)))   = (1/( (√π))) lim_(x→(π/2))  (((√x) sin (cos x)−(√(π/2)) sin (cos (π/2)))/(x−(π/2)))  =(1/( (√π))) .((√π)/( (√2))) .lim_(x→(π/2))  ((sin (cos x))/(x−(π/2)))  =(1/( (√2))).lim_(x→0)  ((sin (−sin x))/x)  =(1/( (√2))) .lim_(x→0)  ((−sin x)/x)=−(1/( (√2)))
f(x)=xsin(cosx)πf(π2)=limxπ2f(x)f(π2)xπ2=1πlimxπ2xsin(cosx)π2sin(cosπ2)xπ2=1π.π2.limxπ2sin(cosx)xπ2=12.limx0sin(sinx)x=12.limx0sinxx=12
Answered by cortano12 last updated on 20/Feb/23
f(x)=(((√x) sin (cos x))/( (√π)))  f ′(x)=(1/( (√π))) [((sin (cos x))/(2(√x))) −(√x) sin x cos (cos x)]  f ′((π/2))=(1/( (√π))) [0−((√π)/( (√2))) .1 ] =−((√2)/2)
f(x)=xsin(cosx)πf(x)=1π[sin(cosx)2xxsinxcos(cosx)]f(π2)=1π[0π2.1]=22

Leave a Reply

Your email address will not be published. Required fields are marked *