Menu Close

If-f-x-tan-x-cot-x-cot-x-tan-x-f-x-




Question Number 81565 by jagoll last updated on 14/Feb/20
If f(x)= (tan x)^(cot x)  + (cot x)^(tan x)   f ′(x)= ?
Iff(x)=(tanx)cotx+(cotx)tanxf(x)=?
Commented by john santu last updated on 14/Feb/20
good question
goodquestion
Commented by mathmax by abdo last updated on 14/Feb/20
f(x)=(tanx)^(cotanx)  +(cotanx)^(tanx)  ⇒  f(x)=e^((1/(tanx))ln(tanx))  +e^(tanxln((1/(tanx))))  =e^((ln(tanx))/(tanx))  +e^(−tanxln(tanx))   =u(x)+v(x) ⇒f^′ (x)=u^′ (x)+v^′ (x)  u^′ (x)=(((ln(tanx))/(tanx)))^′ u(x) ={(((1+tan^2 x))/(tanx))×tanx −ln(tanx)(1+tan^2 x)}×(1/(tan^2 x))×u(x)  ={1+tan^2 x−ln(tanx)−ln(tanx)tan^2 x}×((u(x))/(tan^2 x))  v^′ (x)=(−tanxln(tanx))^′ v(x)  =−{(1+tan^2 x)ln(tanx)+tanx×((1+tan^2 x)/(tanx))}v(x)  =−{(1+tan^2 x)ln(tanx)+1+tan^2 x}v(x)
f(x)=(tanx)cotanx+(cotanx)tanxf(x)=e1tanxln(tanx)+etanxln(1tanx)=eln(tanx)tanx+etanxln(tanx)=u(x)+v(x)f(x)=u(x)+v(x)u(x)=(ln(tanx)tanx)u(x)={(1+tan2x)tanx×tanxln(tanx)(1+tan2x)}×1tan2x×u(x)={1+tan2xln(tanx)ln(tanx)tan2x}×u(x)tan2xv(x)=(tanxln(tanx))v(x)={(1+tan2x)ln(tanx)+tanx×1+tan2xtanx}v(x)={(1+tan2x)ln(tanx)+1+tan2x}v(x)
Answered by john santu last updated on 14/Feb/20
Commented by jagoll last updated on 14/Feb/20
thank a lot of
thankalotof

Leave a Reply

Your email address will not be published. Required fields are marked *