Menu Close

if-f-x-x-2-1-and-g-x-1-x-2-3-find-domain-function-g-f-x-




Question Number 83662 by jagoll last updated on 05/Mar/20
if f(x) = (√(x^2 −1))   and g(x) = (1/( (√(x^2 −3))))  find domain function   (g • f)(x)
$$\mathrm{if}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\:\:\:\mathrm{and}\:\mathrm{g}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{3}}} \\ $$$$\mathrm{find}\:\mathrm{domain}\:\mathrm{function}\: \\ $$$$\left(\mathrm{g}\:\bullet\:\mathrm{f}\right)\left(\mathrm{x}\right) \\ $$
Commented by MJS last updated on 05/Mar/20
f(g(x)) or g(f(x)) ?  both interpretations of (g○f) are common
$${f}\left({g}\left({x}\right)\right)\:\mathrm{or}\:{g}\left({f}\left({x}\right)\right)\:? \\ $$$$\mathrm{both}\:\mathrm{interpretations}\:\mathrm{of}\:\left({g}\circ{f}\right)\:\mathrm{are}\:\mathrm{common} \\ $$
Commented by jagoll last updated on 05/Mar/20
yes sir g(f(x))
$$\mathrm{yes}\:\mathrm{sir}\:\mathrm{g}\left(\mathrm{f}\left({x}\right)\right) \\ $$
Commented by mathmax by abdo last updated on 05/Mar/20
gof(x)=g(f(x))=(1/( (√((f(x))^2 −3)))) =(1/( (√(x^2 −1−3)))) =(1/( (√(x^2 −4))))  x^2 −4 >0 ⇒∣x∣>2 ⇒x>2 or x<−2 ⇒D_(gof) =]−∞,−2[∪]2,+∞[
$${gof}\left({x}\right)={g}\left({f}\left({x}\right)\right)=\frac{\mathrm{1}}{\:\sqrt{\left({f}\left({x}\right)\right)^{\mathrm{2}} −\mathrm{3}}}\:=\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{1}−\mathrm{3}}}\:=\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}} \\ $$$$\left.{x}^{\mathrm{2}} −\mathrm{4}\:>\mathrm{0}\:\Rightarrow\mid{x}\mid>\mathrm{2}\:\Rightarrow{x}>\mathrm{2}\:{or}\:{x}<−\mathrm{2}\:\Rightarrow{D}_{{gof}} =\right]−\infty,−\mathrm{2}\left[\cup\right]\mathrm{2},+\infty\left[\right. \\ $$
Answered by MJS last updated on 05/Mar/20
f(g(x))=(√((4−x^2 )/(x^2 −3)))  3<x^2 ≤4 ⇒ −2≤x<−(√3) ∨ (√3)<x≤2  g(f(x))=(1/( (√(x^2 −4))))  x^2 −4>0 ⇒ x^2 >4 ⇒ x<−2∨x>2
$${f}\left({g}\left({x}\right)\right)=\sqrt{\frac{\mathrm{4}−{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{3}}} \\ $$$$\mathrm{3}<{x}^{\mathrm{2}} \leqslant\mathrm{4}\:\Rightarrow\:−\mathrm{2}\leqslant{x}<−\sqrt{\mathrm{3}}\:\vee\:\sqrt{\mathrm{3}}<{x}\leqslant\mathrm{2} \\ $$$${g}\left({f}\left({x}\right)\right)=\frac{\mathrm{1}}{\:\sqrt{{x}^{\mathrm{2}} −\mathrm{4}}} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}>\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{2}} >\mathrm{4}\:\Rightarrow\:{x}<−\mathrm{2}\vee{x}>\mathrm{2} \\ $$
Commented by jagoll last updated on 05/Mar/20
yess
$$\mathrm{yess} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *