Menu Close

if-f-x-x-2-2x-find-x-f-f-f-x-2-99-999-999-




Question Number 184305 by HeferH last updated on 05/Jan/23
if: f(x) = x^2  + 2x  find x:   f(f(f(x + 2))) = 99 999 999
$${if}:\:{f}\left({x}\right)\:=\:{x}^{\mathrm{2}} \:+\:\mathrm{2}{x} \\ $$$${find}\:{x}: \\ $$$$\:{f}\left({f}\left({f}\left({x}\:+\:\mathrm{2}\right)\right)\right)\:=\:\mathrm{99}\:\mathrm{999}\:\mathrm{999}\: \\ $$
Answered by Frix last updated on 05/Jan/23
x=t−3  f(x)=(t−3)(t−1)  f(x+2)=t^2 −1  f(f(x+2))=t^4 −1  f(f(f(x+2)))=t^8 −1  t^8 =10^8   t=±10∨t=±10i∨t=±5(√2)(1±i)_([4 solutions])
$${x}={t}−\mathrm{3} \\ $$$${f}\left({x}\right)=\left({t}−\mathrm{3}\right)\left({t}−\mathrm{1}\right) \\ $$$${f}\left({x}+\mathrm{2}\right)={t}^{\mathrm{2}} −\mathrm{1} \\ $$$${f}\left({f}\left({x}+\mathrm{2}\right)\right)={t}^{\mathrm{4}} −\mathrm{1} \\ $$$${f}\left({f}\left({f}\left({x}+\mathrm{2}\right)\right)\right)={t}^{\mathrm{8}} −\mathrm{1} \\ $$$${t}^{\mathrm{8}} =\mathrm{10}^{\mathrm{8}} \\ $$$${t}=\pm\mathrm{10}\vee{t}=\pm\mathrm{10i}\vee\underset{\left[\mathrm{4}\:\mathrm{solutions}\right]} {{t}=\pm\mathrm{5}\sqrt{\mathrm{2}}\left(\mathrm{1}\pm\mathrm{i}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *