Menu Close

If-f-x-x-2-8-x-a-8-1-has-2-diffrent-real-roots-in-7a-find-the-range-of-a-gt-0-




Question Number 185764 by CrispyXYZ last updated on 27/Jan/23
If f(x)=−(x^2 /8)+x−(a/8)−1 has 2 diffrent real  roots in ((√(7a)),+∞), find the range of a>0.
Iff(x)=x28+xa81has2diffrentrealrootsin(7a,+),findtherangeofa>0.
Answered by CrispyXYZ last updated on 28/Jan/23
Let g(x)=f(x+(√(7a)))   = −(x^2 /8)+(1−((√(7a))/4))x−a+(√(7a))−1 (x>0, a>0)  So we get:  g(0)<0 and Δ>0 and symmetry axis=4−(√(7a))>0  ⇒a∈(0, ((5−(√(21)))/2))
Letg(x)=f(x+7a)=x28+(17a4)xa+7a1(x>0,a>0)Soweget:g(0)<0andΔ>0andsymmetryaxis=47a>0a(0,5212)
Answered by Rajpurohith last updated on 27/Jan/23
Commented by mr W last updated on 28/Jan/23
wrong!  0<a<((5−(√(21)))/2)
wrong!0<a<5212
Commented by Rajpurohith last updated on 21/Jun/23
yes!! Im sorry its 0<a<((5−(√(21)))/2)
yes!!Imsorryits0<a<5212

Leave a Reply

Your email address will not be published. Required fields are marked *