Menu Close

If-f-x-x-3-x-1-then-invrse-function-of-f-x-is-




Question Number 154725 by SLVR last updated on 21/Sep/21
If f(x)=x^3 +x+1 then invrse function  of f(x) is???
$${If}\:{f}\left({x}\right)={x}^{\mathrm{3}} +{x}+\mathrm{1}\:{then}\:{invrse}\:{function} \\ $$$${of}\:{f}\left({x}\right)\:{is}??? \\ $$
Answered by mr W last updated on 21/Sep/21
y=x^3 +x+1  x^3 +x+1−y=0  x=(((√(((1/3))^3 +(((1−y)/2))^2 ))−(((1−y)/2))))^(1/3) −(((√(((1/3))^3 +(((1−y)/2))^2 ))+(((1−y)/2))))^(1/3)   x=(((√((1/(27))+(((y−1)^2 )/4)))+((y−1)/2)))^(1/3) −(((√((1/(27))+(((y−1)^2 )/4)))−((y−1)/2)))^(1/3)   ⇒f^(−1) (x)=(((√((1/(27))+(((x−1)^2 )/4)))+((x−1)/2)))^(1/3) −(((√((1/(27))+(((x−1)^2 )/4)))−((x−1)/2)))^(1/3)
$${y}={x}^{\mathrm{3}} +{x}+\mathrm{1} \\ $$$${x}^{\mathrm{3}} +{x}+\mathrm{1}−{y}=\mathrm{0} \\ $$$${x}=\sqrt[{\mathrm{3}}]{\sqrt{\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} +\left(\frac{\mathrm{1}−{y}}{\mathrm{2}}\right)^{\mathrm{2}} }−\left(\frac{\mathrm{1}−{y}}{\mathrm{2}}\right)}−\sqrt[{\mathrm{3}}]{\sqrt{\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{3}} +\left(\frac{\mathrm{1}−{y}}{\mathrm{2}}\right)^{\mathrm{2}} }+\left(\frac{\mathrm{1}−{y}}{\mathrm{2}}\right)} \\ $$$${x}=\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{27}}+\frac{\left({y}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}}+\frac{{y}−\mathrm{1}}{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{27}}+\frac{\left({y}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}}−\frac{{y}−\mathrm{1}}{\mathrm{2}}} \\ $$$$\Rightarrow{f}^{−\mathrm{1}} \left({x}\right)=\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{27}}+\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}}+\frac{{x}−\mathrm{1}}{\mathrm{2}}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{27}}+\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}}−\frac{{x}−\mathrm{1}}{\mathrm{2}}} \\ $$
Commented by SLVR last updated on 21/Sep/21
Great...dear professor...mr.W  I need to know how x= in 3rdstep?  kindly...explain
$${Great}…{dear}\:{professor}…{mr}.{W} \\ $$$${I}\:{need}\:{to}\:{know}\:{how}\:{x}=\:{in}\:\mathrm{3}{rdstep}? \\ $$$${kindly}…{explain} \\ $$
Commented by mr W last updated on 21/Sep/21
Cardano′s formula for cubic equation.  see Q89687
$${Cardano}'{s}\:{formula}\:{for}\:{cubic}\:{equation}. \\ $$$${see}\:{Q}\mathrm{89687} \\ $$
Commented by SLVR last updated on 21/Sep/21
Thank you   ...sir...so.. kind of you
$${Thank}\:{you}\:\:\:…{sir}…{so}..\:{kind}\:{of}\:{you} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *