Menu Close

if-f-x-x-be-a-mapping-prove-that-f-I-X-I-X-f-f-I-X-help-me-sir-




Question Number 109149 by mohammad17 last updated on 21/Aug/20
if f:x→x be a mapping prove that (f⊆I_X ∨I_X ⊆f)→f=I_(X ) ?  help me sir
iff:xxbeamappingprovethat(fIXIXf)f=IX?helpmesir
Commented by kaivan.ahmadi last updated on 21/Aug/20
X→^f X  X→^I X , I(x)=x  if   f⊆I_X  then for each x in X we haveI_X (x)=x  on the other hand x=f(y) for some y in X  so I_X ⊆f and I_X =f.  if I_X ⊆f then for each x in X we have f(x)∈X  let f(x)=y∈X and so f(x)=y=I_X (y) so f⊆I_X , hence  f=I_X .
XfXXIX,I(x)=xiffIXthenforeachxinXwehaveIX(x)=xontheotherhandx=f(y)forsomeyinXsoIXfandIX=f.ifIXfthenforeachxinXwehavef(x)Xletf(x)=yXandsof(x)=y=IX(y)sofIX,hencef=IX.
Commented by mohammad17 last updated on 21/Aug/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *