Menu Close

If-f-x-x-x-3-x-5-x-n-and-lim-x-1-f-2-x-f-2-1-x-1-2-10-then-n-




Question Number 166627 by cortano1 last updated on 23/Feb/22
   If f(x)=x+x^3 +x^5 +...+x^n  and      lim_(x→1) ((f^2 (x)−f^2 (1))/(x−1)) = 2^(10)  then n = ?
Iff(x)=x+x3+x5++xnandlimx1f2(x)f2(1)x1=210thenn=?
Commented by MJS_new last updated on 23/Feb/22
15
15
Commented by cortano1 last updated on 23/Feb/22
why?
why?
Answered by MJS_new last updated on 23/Feb/22
I took f^2 (x) = (f(x))^2   f(x)=x+x^3 +x^5 +...+x^(2k−1)  ⇒ f(1)=k  f(x)=Σ_(j=1) ^k x^(2j−1) =((x(x^(2k) −1))/(x^2 −1)); lim_(x→1)  ((x(x^(2k) −1))/(x^2 −1)) =k ⇒ f(1)=k  ((f^2 (x)−f^2 (1))/(x−1))=((x^(4k+2) −2x^(2k+2) −k^2 x^2 +x^2 −k^2 )/(x^5 −x^4 −2x^3 +2x^2 +x−1))  lim_(x→1)  ((f^2 (x)−f^2 (1))/(x−1)) =  =lim_(x→1)  (((d^3 /dx^3 )[x^(4k+2) −2x^(2k+2) −k^2 x^2 +x^2 −k^2 ])/((d^3 /dx^3 )[x^5 −x^4 −2x^3 +2x^2 +x−1]))=  =lim_(x→1)  ((2kx((2k+1)(4k+1)x^(4k−2) −(k+1)(2k+1)x^(2k−2) −3kx))/(3(5x^2 −2x−1))) =2k^3   2k^3 =2^(10)   k^3 =2^9   k=2^3 =8  n=2k−1=15
Itookf2(x)=(f(x))2f(x)=x+x3+x5++x2k1f(1)=kf(x)=kj=1x2j1=x(x2k1)x21;limx1x(x2k1)x21=kf(1)=kf2(x)f2(1)x1=x4k+22x2k+2k2x2+x2k2x5x42x3+2x2+x1limx1f2(x)f2(1)x1==limx1d3dx3[x4k+22x2k+2k2x2+x2k2]d3dx3[x5x42x3+2x2+x1]==limx12kx((2k+1)(4k+1)x4k2(k+1)(2k+1)x2k23kx)3(5x22x1)=2k32k3=210k3=29k=23=8n=2k1=15
Commented by cortano1 last updated on 24/Feb/22
oo i think f^2 (x)=(fof)(x)    what standart form (fof)(x)?
ooithinkf2(x)=(fof)(x)whatstandartform(fof)(x)?
Commented by MJS_new last updated on 24/Feb/22
I′m not sure what′s standard nowadays.  also f○g for some means f(g(x)) and for  others g(f(x))  too much confusion  if sin^2  x means (sin x)^2  then why sin^(−1)  x  doesn′t mean (sin x)^(−1) ?  what about ln^(−1)  x? is it (1/(ln x)) or e^x ?  if we use f^( n) (x) for the n^(th)  derivate then why  f^( −1) (x) ≠ ∫f(x)dx?  better ask in each case what is meant...
Imnotsurewhatsstandardnowadays.alsofgforsomemeansf(g(x))andforothersg(f(x))toomuchconfusionifsin2xmeans(sinx)2thenwhysin1xdoesntmean(sinx)1?whataboutln1x?isit1lnxorex?ifweusefn(x)forthenthderivatethenwhyf1(x)f(x)dx?betteraskineachcasewhatismeant
Commented by cortano1 last updated on 24/Feb/22
thanks you sir
thanksyousir
Answered by mahdipoor last updated on 23/Feb/22
lim_(x→1) ((f^2 (x)−f^2 (1))/(x−1))=lim_(x→1) (((f(x)−f(1))/(x−1)))(f(x)+f(1))=  f^′ (1)×2f(1)=(1+3+5+...+n)×2(1+...+1)=  (((n+1)/2))^2 ×2×(((n+1)/2))=2^(10) ⇒((n+1)/2)=2^3 ⇒  n=15
limx1f2(x)f2(1)x1=limx1(f(x)f(1)x1)(f(x)+f(1))=f(1)×2f(1)=(1+3+5++n)×2(1++1)=(n+12)2×2×(n+12)=210n+12=23n=15

Leave a Reply

Your email address will not be published. Required fields are marked *