Menu Close

If-f-x-y-f-x-f-y-for-real-x-y-and-f-0-0-Let-F-x-f-x-1-f-x-2-then-F-x-is-a-even-b-odd-c-neither-even-nor-odd-




Question Number 44350 by Necxx last updated on 27/Sep/18
If f(x+y)=f(x).f(y) for real x,y  and f(0)≠0.Let F(x)=((f(x))/(1+(f(x))^2 ))  then F(x) is  a)even b)odd c)neither even nor odd
$${If}\:{f}\left({x}+{y}\right)={f}\left({x}\right).{f}\left({y}\right)\:{for}\:{real}\:{x},{y} \\ $$$${and}\:{f}\left(\mathrm{0}\right)\neq\mathrm{0}.{Let}\:{F}\left({x}\right)=\frac{{f}\left({x}\right)}{\mathrm{1}+\left({f}\left({x}\right)\right)^{\mathrm{2}} } \\ $$$${then}\:{F}\left({x}\right)\:{is} \\ $$$$\left.{a}\left.\right)\left.{even}\:{b}\right){odd}\:{c}\right){neither}\:{even}\:{nor}\:{odd} \\ $$
Commented by maxmathsup by imad last updated on 27/Sep/18
⇒f(x).f(−x)=f(0) ⇒f(0)^2 =f(0) ⇒f(0) =1  ⇒F(0)=((f(0))/(1+(f(0))^2 )) =(1/2)  due to F(0)≠0 F can t be odd let see if F is even  F(−x) =((f(−x))/(1+(f(−x))^2 )) =((1/(f(x)))/(1+((1/(f(x))))^2 )) = (1/(f(x){((f^2 (x)+1)/(f^2 (x)))})) =((f(x))/(1+f^2 (x)))=F(x)  so  F is even.
$$\Rightarrow{f}\left({x}\right).{f}\left(−{x}\right)={f}\left(\mathrm{0}\right)\:\Rightarrow{f}\left(\mathrm{0}\right)^{\mathrm{2}} ={f}\left(\mathrm{0}\right)\:\Rightarrow{f}\left(\mathrm{0}\right)\:=\mathrm{1}\:\:\Rightarrow{F}\left(\mathrm{0}\right)=\frac{{f}\left(\mathrm{0}\right)}{\mathrm{1}+\left({f}\left(\mathrm{0}\right)\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${due}\:{to}\:{F}\left(\mathrm{0}\right)\neq\mathrm{0}\:{F}\:{can}\:{t}\:{be}\:{odd}\:{let}\:{see}\:{if}\:{F}\:{is}\:{even} \\ $$$${F}\left(−{x}\right)\:=\frac{{f}\left(−{x}\right)}{\mathrm{1}+\left({f}\left(−{x}\right)\right)^{\mathrm{2}} }\:=\frac{\frac{\mathrm{1}}{{f}\left({x}\right)}}{\mathrm{1}+\left(\frac{\mathrm{1}}{{f}\left({x}\right)}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{1}}{{f}\left({x}\right)\left\{\frac{{f}^{\mathrm{2}} \left({x}\right)+\mathrm{1}}{{f}^{\mathrm{2}} \left({x}\right)}\right\}}\:=\frac{{f}\left({x}\right)}{\mathrm{1}+{f}^{\mathrm{2}} \left({x}\right)}={F}\left({x}\right) \\ $$$${so}\:\:{F}\:{is}\:{even}. \\ $$
Commented by Necxx last updated on 27/Sep/18
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by Necxx last updated on 27/Sep/18
that′s it
$${that}'{s}\:{it} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *