Menu Close

if-F-x-y-F-y-x-and-x-y-c-constant-prove-that-F-max-or-min-F-c-2-c-2-




Question Number 57480 by mr W last updated on 05/Apr/19
if F(x,y)=F(y,x) and x+y=c (constant)  prove that F_(max or min) =F((c/2),(c/2)).
$${if}\:{F}\left({x},{y}\right)={F}\left({y},{x}\right)\:{and}\:{x}+{y}={c}\:\left({constant}\right) \\ $$$${prove}\:{that}\:{F}_{{max}\:{or}\:{min}} ={F}\left(\frac{{c}}{\mathrm{2}},\frac{{c}}{\mathrm{2}}\right). \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Apr/19
what is the difference between F(x,y) and F(y,x)
$${what}\:{is}\:{the}\:{difference}\:{between}\:{F}\left({x},{y}\right)\:{and}\:{F}\left({y},{x}\right) \\ $$
Commented by mr W last updated on 07/Apr/19
e.g.  F(x,y)=sin (x) × sin (y)  F(y,x)=sin (y) × sin (x)=F(x,y)
$${e}.{g}. \\ $$$${F}\left({x},{y}\right)=\mathrm{sin}\:\left({x}\right)\:×\:\mathrm{sin}\:\left({y}\right) \\ $$$${F}\left({y},{x}\right)=\mathrm{sin}\:\left({y}\right)\:×\:\mathrm{sin}\:\left({x}\right)={F}\left({x},{y}\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *