Menu Close

If-f-z-z-sin-z-z-2-verify-if-f-z-satisfy-cauchy-rieman-condition-




Question Number 152771 by Tawa11 last updated on 01/Sep/21
If    f(z)   =    z sin(z)   +   ∣z∣^2 ,       verify if   f(z)   satisfy cauchy rieman  condition
Iff(z)=zsin(z)+z2,verifyiff(z)satisfycauchyriemancondition
Commented by alisiao last updated on 01/Sep/21
f(z)= z sin(z) + z z^_     f(z) = (x + iy ) sin(x+iy) + x^2 −y^2     f(z)= (x +iy)[ sin(x) cos(iy) + cos(x) sin(iy)] + x^2 −y^2     f(z)=(x+iy) [  sin(x) cosh(y) + i cos(x) sinh(y)]+x^2 −y^2     f(z)= (x sin(x)cosh(y) − y cos(x)sinh(y) +x^2 −y^2  ] + i [ y sin(x) cosh(y) +x cos(x)sinh(y)]    U(x,y) = x sin(x) cosh(y) − y cos(x)sinh(y) +x^2 −y^2     V (x,y) = y sin(x)cosh(y) + x cos(y)sinh(y)    U_x  = x cos(x) cosh(y) +sin(x) cosh(y) + y sin(x) sinh(y) + 2x    U_y  = y sin(x) sinh(y)+sin(x) cosh(y) − y cos(x) cosh(y) − cos(x) sinh(y) − 2y    V_x  = y cos(x) cosh(y) + cos(y) sinh(y)    V_y  = y sin(x) sinh(y)+sin(x) cosh(y)+x cos(y) cosh(y) − x sin(y) cosh (y)    ∵ U_x  ≠ V _y         , U_y  ≠ − V_x     ∴ f(z) is dont satisfy cauchy rieman condition    ⟨ M . T ⟩
f(z)=zsin(z)+zz_f(z)=(x+iy)sin(x+iy)+x2y2f(z)=(x+iy)[sin(x)cos(iy)+cos(x)sin(iy)]+x2y2f(z)=(x+iy)[sin(x)cosh(y)+icos(x)sinh(y)]+x2y2f(z)=(xsin(x)cosh(y)ycos(x)sinh(y)+x2y2]+i[ysin(x)cosh(y)+xcos(x)sinh(y)]U(x,y)=xsin(x)cosh(y)ycos(x)sinh(y)+x2y2V(x,y)=ysin(x)cosh(y)+xcos(y)sinh(y)Ux=xcos(x)cosh(y)+sin(x)cosh(y)+ysin(x)sinh(y)+2xUy=ysin(x)sinh(y)+sin(x)cosh(y)ycos(x)cosh(y)cos(x)sinh(y)2yVx=ycos(x)cosh(y)+cos(y)sinh(y)Vy=ysin(x)sinh(y)+sin(x)cosh(y)+xcos(y)cosh(y)xsin(y)cosh(y)UxVy,UyVxf(z)isdontsatisfycauchyriemanconditionM.T
Commented by Tawa11 last updated on 01/Sep/21
God bless you sir. I appreciate your time
Godblessyousir.Iappreciateyourtime

Leave a Reply

Your email address will not be published. Required fields are marked *