Menu Close

If-first-n-terms-of-an-A-P-is-cn-2-find-sum-of-squares-of-its-first-n-terms-




Question Number 109901 by ajfour last updated on 26/Aug/20
If first n terms of an A.P. is cn^2 ,  find sum of squares of its first  n terms.
IffirstntermsofanA.P.iscn2,findsumofsquaresofitsfirstnterms.
Answered by mr W last updated on 26/Aug/20
a_1 +(a_1 +d)+(a_1 +2d)+....+(a_1 +(n−1)d)  =na_1 +((n(n−1)d)/2)=n[a_1 −(d/2)+((nd)/2)]=cn^2   ⇒a_1 −(d/2)=0 ⇒d=2a_1   ⇒(d/2)=c ⇒d=2c  ⇒a_1 =c, d=2c    c^2 +(3c)^2 +(5c)^2 +...((2n−1)c)^2   =[1^2 +3^2 +5^2 +...(2n−1)^2 ]c^2   =((n(4n^2 −1)c^2 )/3)
a1+(a1+d)+(a1+2d)+.+(a1+(n1)d)=na1+n(n1)d2=n[a1d2+nd2]=cn2a1d2=0d=2a1d2=cd=2ca1=c,d=2cc2+(3c)2+(5c)2+((2n1)c)2=[12+32+52+(2n1)2]c2=n(4n21)c23
Commented by ajfour last updated on 26/Aug/20
Marvellous Sir, too good!  but how could you know the  answer after the 2^(nd)  last step,  Sir?
MarvellousSir,toogood!buthowcouldyouknowtheanswerafterthe2ndlaststep,Sir?
Commented by mr W last updated on 26/Aug/20
Σ_(k=1) ^n (2k−1)^2   =Σ_(k=1) ^n (4k^2 −4k+1)  =4×((n(n+1)(2n+1))/6)−4×((n(n+1))/2)+n  =((4(n−1)n(n+1))/3)+n  =(((4n^2 −4+3)/3))n  =((n(4n^2 −1))/3)
nk=1(2k1)2=nk=1(4k24k+1)=4×n(n+1)(2n+1)64×n(n+1)2+n=4(n1)n(n+1)3+n=(4n24+33)n=n(4n21)3

Leave a Reply

Your email address will not be published. Required fields are marked *