Menu Close

If-first-n-terms-of-an-A-P-is-cn-2-find-sum-of-squares-of-its-first-n-terms-




Question Number 109901 by ajfour last updated on 26/Aug/20
If first n terms of an A.P. is cn^2 ,  find sum of squares of its first  n terms.
$${If}\:{first}\:{n}\:{terms}\:{of}\:{an}\:{A}.{P}.\:{is}\:{cn}^{\mathrm{2}} , \\ $$$${find}\:{sum}\:{of}\:{squares}\:{of}\:{its}\:{first} \\ $$$${n}\:{terms}. \\ $$
Answered by mr W last updated on 26/Aug/20
a_1 +(a_1 +d)+(a_1 +2d)+....+(a_1 +(n−1)d)  =na_1 +((n(n−1)d)/2)=n[a_1 −(d/2)+((nd)/2)]=cn^2   ⇒a_1 −(d/2)=0 ⇒d=2a_1   ⇒(d/2)=c ⇒d=2c  ⇒a_1 =c, d=2c    c^2 +(3c)^2 +(5c)^2 +...((2n−1)c)^2   =[1^2 +3^2 +5^2 +...(2n−1)^2 ]c^2   =((n(4n^2 −1)c^2 )/3)
$${a}_{\mathrm{1}} +\left({a}_{\mathrm{1}} +{d}\right)+\left({a}_{\mathrm{1}} +\mathrm{2}{d}\right)+….+\left({a}_{\mathrm{1}} +\left({n}−\mathrm{1}\right){d}\right) \\ $$$$={na}_{\mathrm{1}} +\frac{{n}\left({n}−\mathrm{1}\right){d}}{\mathrm{2}}={n}\left[{a}_{\mathrm{1}} −\frac{{d}}{\mathrm{2}}+\frac{{nd}}{\mathrm{2}}\right]={cn}^{\mathrm{2}} \\ $$$$\Rightarrow{a}_{\mathrm{1}} −\frac{{d}}{\mathrm{2}}=\mathrm{0}\:\Rightarrow{d}=\mathrm{2}{a}_{\mathrm{1}} \\ $$$$\Rightarrow\frac{{d}}{\mathrm{2}}={c}\:\Rightarrow{d}=\mathrm{2}{c} \\ $$$$\Rightarrow{a}_{\mathrm{1}} ={c},\:{d}=\mathrm{2}{c} \\ $$$$ \\ $$$${c}^{\mathrm{2}} +\left(\mathrm{3}{c}\right)^{\mathrm{2}} +\left(\mathrm{5}{c}\right)^{\mathrm{2}} +…\left(\left(\mathrm{2}{n}−\mathrm{1}\right){c}\right)^{\mathrm{2}} \\ $$$$=\left[\mathrm{1}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} +\mathrm{5}^{\mathrm{2}} +…\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} \right]{c}^{\mathrm{2}} \\ $$$$=\frac{{n}\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right){c}^{\mathrm{2}} }{\mathrm{3}} \\ $$
Commented by ajfour last updated on 26/Aug/20
Marvellous Sir, too good!  but how could you know the  answer after the 2^(nd)  last step,  Sir?
$${Marvellous}\:{Sir},\:{too}\:{good}! \\ $$$${but}\:{how}\:{could}\:{you}\:{know}\:{the} \\ $$$${answer}\:{after}\:{the}\:\mathrm{2}^{{nd}} \:{last}\:{step}, \\ $$$${Sir}? \\ $$
Commented by mr W last updated on 26/Aug/20
Σ_(k=1) ^n (2k−1)^2   =Σ_(k=1) ^n (4k^2 −4k+1)  =4×((n(n+1)(2n+1))/6)−4×((n(n+1))/2)+n  =((4(n−1)n(n+1))/3)+n  =(((4n^2 −4+3)/3))n  =((n(4n^2 −1))/3)
$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}{k}−\mathrm{1}\right)^{\mathrm{2}} \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{4}{k}^{\mathrm{2}} −\mathrm{4}{k}+\mathrm{1}\right) \\ $$$$=\mathrm{4}×\frac{{n}\left({n}+\mathrm{1}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}{\mathrm{6}}−\mathrm{4}×\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}+{n} \\ $$$$=\frac{\mathrm{4}\left({n}−\mathrm{1}\right){n}\left({n}+\mathrm{1}\right)}{\mathrm{3}}+{n} \\ $$$$=\left(\frac{\mathrm{4}{n}^{\mathrm{2}} −\mathrm{4}+\mathrm{3}}{\mathrm{3}}\right){n} \\ $$$$=\frac{{n}\left(\mathrm{4}{n}^{\mathrm{2}} −\mathrm{1}\right)}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *