Menu Close

If-fog-x-2x-1-x-and-g-x-5x-2-find-f-x-




Question Number 153583 by pete last updated on 08/Sep/21
If fog(x)=((2x−1)/x) and g(x)=5x+2, find  f(x).
$$\mathrm{If}\:{fog}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}}\:\mathrm{and}\:\mathrm{g}\left({x}\right)=\mathrm{5}{x}+\mathrm{2},\:\mathrm{find} \\ $$$${f}\left({x}\right). \\ $$
Commented by otchereabdullai@gmail.com last updated on 08/Sep/21
nice question
$$\mathrm{nice}\:\mathrm{question} \\ $$
Commented by benhamimed last updated on 08/Sep/21
g(x)=y    ; x=((y−2)/5)  f(y)=((2((y−2)/5)−1)/((y−2)/5))=((2y−4−5)/(y−2))=((2y−9)/(y−2))  f(x)=((2x−9)/(x−2))
$${g}\left({x}\right)={y}\:\:\:\:;\:{x}=\frac{{y}−\mathrm{2}}{\mathrm{5}} \\ $$$${f}\left({y}\right)=\frac{\mathrm{2}\frac{{y}−\mathrm{2}}{\mathrm{5}}−\mathrm{1}}{\frac{{y}−\mathrm{2}}{\mathrm{5}}}=\frac{\mathrm{2}{y}−\mathrm{4}−\mathrm{5}}{{y}−\mathrm{2}}=\frac{\mathrm{2}{y}−\mathrm{9}}{{y}−\mathrm{2}} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$$$ \\ $$
Commented by pete last updated on 08/Sep/21
Thanks very much sir
$$\mathrm{Thanks}\:\mathrm{very}\:\mathrm{much}\:\mathrm{sir} \\ $$
Answered by liberty last updated on 08/Sep/21
f(g(x))=2−(1/x)   f(5x+2)=2−(1/x)  f(((5x+2−2)/5))=2−(1/((x−2)/5))  f(x)=2−(5/(x−2))=((2x−4−5)/(x−2))=((2x−9)/(x−2))
$${f}\left({g}\left({x}\right)\right)=\mathrm{2}−\frac{\mathrm{1}}{{x}} \\ $$$$\:{f}\left(\mathrm{5}{x}+\mathrm{2}\right)=\mathrm{2}−\frac{\mathrm{1}}{{x}} \\ $$$${f}\left(\frac{\mathrm{5}{x}+\mathrm{2}−\mathrm{2}}{\mathrm{5}}\right)=\mathrm{2}−\frac{\mathrm{1}}{\frac{{x}−\mathrm{2}}{\mathrm{5}}} \\ $$$${f}\left({x}\right)=\mathrm{2}−\frac{\mathrm{5}}{{x}−\mathrm{2}}=\frac{\mathrm{2}{x}−\mathrm{4}−\mathrm{5}}{{x}−\mathrm{2}}=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$
Commented by pete last updated on 08/Sep/21
Thank you sir
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by Rasheed.Sindhi last updated on 08/Sep/21
 fog(x)=((2x−1)/x);g(x)=5x+2;f(x)=?  f(5x+2)=((2x−1)/x)  Let 5x+2=y⇒x=((y−2)/5)  f(y)=((2(((y−2)/5))−1)/((y−2)/5))=((2y−4−5)/(y−2))=((2y−9)/(y−2))  y←x:  f(x)=((2x−9)/(x−2))
$$\:{fog}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}};\mathrm{g}\left({x}\right)=\mathrm{5}{x}+\mathrm{2};{f}\left({x}\right)=? \\ $$$${f}\left(\mathrm{5}{x}+\mathrm{2}\right)=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}} \\ $$$${Let}\:\mathrm{5}{x}+\mathrm{2}={y}\Rightarrow{x}=\frac{{y}−\mathrm{2}}{\mathrm{5}} \\ $$$${f}\left({y}\right)=\frac{\mathrm{2}\left(\frac{{y}−\mathrm{2}}{\mathrm{5}}\right)−\mathrm{1}}{\frac{{y}−\mathrm{2}}{\mathrm{5}}}=\frac{\mathrm{2}{y}−\mathrm{4}−\mathrm{5}}{{y}−\mathrm{2}}=\frac{\mathrm{2}{y}−\mathrm{9}}{{y}−\mathrm{2}} \\ $$$${y}\leftarrow{x}: \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$
Commented by pete last updated on 08/Sep/21
Thank you sir
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by amin96 last updated on 08/Sep/21
fog(x)=2−(1/x)    f(x)=((ax+b)/(cx+d))  fog(x)=((5ax+2a+b)/(5cx+2c+d))=((2x−1)/x)  ⇒   { ((a=(2/5))),((2a+b=−1)),((c=(1/5))),((2c+d=0)) :}  b=(9/5)     d=((−2)/5)  a=(2/5)  c=(1/5)  f(x)=(((2/5)x−(9/5))/((x/5)−(2/5)))=(((2x−9)/5)/((x/5)−(2/5)))=((2x−9)/(x−2))
$${fog}\left({x}\right)=\mathrm{2}−\frac{\mathrm{1}}{{x}}\:\:\:\:{f}\left({x}\right)=\frac{{ax}+{b}}{{cx}+{d}} \\ $$$${fog}\left({x}\right)=\frac{\mathrm{5}{ax}+\mathrm{2}{a}+{b}}{\mathrm{5}{cx}+\mathrm{2}{c}+{d}}=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}}\:\:\Rightarrow\:\:\begin{cases}{{a}=\frac{\mathrm{2}}{\mathrm{5}}}\\{\mathrm{2}{a}+{b}=−\mathrm{1}}\\{{c}=\frac{\mathrm{1}}{\mathrm{5}}}\\{\mathrm{2}{c}+{d}=\mathrm{0}}\end{cases} \\ $$$${b}=\frac{\mathrm{9}}{\mathrm{5}}\:\:\:\:\:{d}=\frac{−\mathrm{2}}{\mathrm{5}}\:\:{a}=\frac{\mathrm{2}}{\mathrm{5}}\:\:{c}=\frac{\mathrm{1}}{\mathrm{5}} \\ $$$${f}\left({x}\right)=\frac{\frac{\mathrm{2}}{\mathrm{5}}{x}−\frac{\mathrm{9}}{\mathrm{5}}}{\frac{{x}}{\mathrm{5}}−\frac{\mathrm{2}}{\mathrm{5}}}=\frac{\frac{\mathrm{2}{x}−\mathrm{9}}{\mathrm{5}}}{\frac{{x}}{\mathrm{5}}−\frac{\mathrm{2}}{\mathrm{5}}}=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$
Answered by amin96 last updated on 08/Sep/21
g(x)=5x+2   ⇒  g^(−1) (x)=((x−2)/5)  fof(x)=((2x−1)/x)  ⇒  fogog^(−1) (x)=f(x)  f(x)=((2(((x−2))/5)−1)/((x−2)/5))=((2x−4−5)/(x−2))=((2x−9)/(x−2))
$${g}\left({x}\right)=\mathrm{5}{x}+\mathrm{2}\:\:\:\Rightarrow\:\:{g}^{−\mathrm{1}} \left({x}\right)=\frac{{x}−\mathrm{2}}{\mathrm{5}} \\ $$$${fof}\left({x}\right)=\frac{\mathrm{2}{x}−\mathrm{1}}{{x}}\:\:\Rightarrow\:\:{fogog}^{−\mathrm{1}} \left({x}\right)={f}\left({x}\right) \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}\frac{\left({x}−\mathrm{2}\right)}{\mathrm{5}}−\mathrm{1}}{\frac{{x}−\mathrm{2}}{\mathrm{5}}}=\frac{\mathrm{2}{x}−\mathrm{4}−\mathrm{5}}{{x}−\mathrm{2}}=\frac{\mathrm{2}{x}−\mathrm{9}}{{x}−\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *