Menu Close

If-g-x-x-x-and-lim-x-2-f-x-f-2-x-2-ax-b-4-3-find-the-value-of-f-g-1-




Question Number 106309 by bemath last updated on 04/Aug/20
If g(x)= x+(√x) and lim_(x→2)  ((f(x)−f(2))/(x^2 +ax+b))=(4/3)  find the value of (f○g)′(1).
Ifg(x)=x+xandlimx2f(x)f(2)x2+ax+b=43findthevalueof(fg)(1).
Answered by bobhans last updated on 05/Aug/20
g(x)= x+(√x) ⇒g′(x)= 1+(1/(2(√x))) ; g′(1)= (3/2)  g(1) = 2   (f○g)′(1)= g′(1)f ′(g(1))=(3/2)f ′(2)  (1) 2^2 +2a+b = 0 →b = −4−2a  (2) lim_(x→2)  ((f(x)−f(2))/(x^2 +ax−2a−4)) = (4/3)  lim_(x→2)  ((f ′(x))/(2x+a)) = (4/3)   case (1) if a ≠ −4 , then we get   f ′(2)= ((16+4a)/3) . so (f○g)′(1)=g′(1).f ′(g(1))  = (3/2).f ′(2)= (3/2).((16+4a)/3) = 8+2a  case (2) if a = −4 , then lim_(x→2)  ((f ′(x))/(2x+a)) is form (0/0)  so  f ′(2) = 0 ⇒(f○g)′(1)= (3/2).0 = 0
g(x)=x+xg(x)=1+12x;g(1)=32g(1)=2(fg)(1)=g(1)f(g(1))=32f(2)(1)22+2a+b=0b=42a(2)limx2f(x)f(2)x2+ax2a4=43limx2f(x)2x+a=43case(1)ifa4,thenwegetf(2)=16+4a3.so(fg)(1)=g(1).f(g(1))=32.f(2)=32.16+4a3=8+2acase(2)ifa=4,thenlimx2f(x)2x+aisform00sof(2)=0(fg)(1)=32.0=0

Leave a Reply

Your email address will not be published. Required fields are marked *