Menu Close

If-GCD-a-b-1-and-GCD-c-d-1-a-b-c-d-1-a-lt-b-c-lt-d-is-it-possible-that-a-b-c-d-is-an-integer-number-




Question Number 26410 by Joel578 last updated on 25/Dec/17
If  GCD(a,b) = 1 and GCD(c, d) = 1  a ≠ b ≠ c ≠ d ≠ 1,  a < b,  c < d  is it possible that  (a/b) + (c/d) is an integer number?
$$\mathrm{If}\:\:{GCD}\left({a},{b}\right)\:=\:\mathrm{1}\:\mathrm{and}\:{GCD}\left({c},\:{d}\right)\:=\:\mathrm{1} \\ $$$${a}\:\neq\:{b}\:\neq\:{c}\:\neq\:{d}\:\neq\:\mathrm{1},\:\:{a}\:<\:{b},\:\:{c}\:<\:{d} \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{that}\:\:\frac{{a}}{{b}}\:+\:\frac{{c}}{{d}}\:\mathrm{is}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{number}? \\ $$
Answered by mrW1 last updated on 25/Dec/17
since gcd(c,d)=1, (c/d) is already reduced  to lowest terms, i.e. (c/d) can not be  simplified further.  let′s asume (a/b)+(c/d)=n, then  (c/d)=n−(a/b)=((nb−a)/b)=(e/b) with e=nb−a=integer  that means (c/d) can be simplified to  (e/b) with b<d. but this is a contradiction.  ⇒(a/b)+(c/d) can not be an integer number.
$${since}\:{gcd}\left({c},{d}\right)=\mathrm{1},\:\frac{{c}}{{d}}\:{is}\:{already}\:{reduced} \\ $$$${to}\:{lowest}\:{terms},\:{i}.{e}.\:\frac{{c}}{{d}}\:{can}\:{not}\:{be} \\ $$$${simplified}\:{further}. \\ $$$${let}'{s}\:{asume}\:\frac{{a}}{{b}}+\frac{{c}}{{d}}={n},\:{then} \\ $$$$\frac{{c}}{{d}}={n}−\frac{{a}}{{b}}=\frac{{nb}−{a}}{{b}}=\frac{{e}}{{b}}\:{with}\:{e}={nb}−{a}={integer} \\ $$$${that}\:{means}\:\frac{{c}}{{d}}\:{can}\:{be}\:{simplified}\:{to} \\ $$$$\frac{{e}}{{b}}\:{with}\:{b}<{d}.\:{but}\:{this}\:{is}\:{a}\:{contradiction}. \\ $$$$\Rightarrow\frac{{a}}{{b}}+\frac{{c}}{{d}}\:{can}\:{not}\:{be}\:{an}\:{integer}\:{number}. \\ $$
Commented by Joel578 last updated on 27/Dec/17
thank you very much
$${thank}\:{you}\:{very}\:{much} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *